@article{TawfikSchlieperKlotzKreyeetal.1989, author = {Tawfik-Schlieper, H. and Klotz, Karl-Norbert and Kreye, V. A. W. and Schwabe, U.}, title = {Characterization of the K\(^+\)-channel-coupled adenosine receptor in guinea pig atria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-60333}, year = {1989}, abstract = {In the present work we studied the pharmacological profile of adenosine receptors in guinea pig atria by investigating the effect of different adenosine analogues on 86Rb + -efflux from isolated left atria and on binding of the antagonist radioligand 8-cyclopentyl-1 ,3-[\(^3\)H]dipropylxanthine ([\(^3\)H]DPCPX) to atrial membrane preparations. The rate of \8^{86}\)Rb\(^+\) -effiux was increased twofold by the maximally effective concentrations of adenosine receptor agonists. The EC50-values for 2-chloro-N\(^6\)-cyclopentyladenosine (CCPA), R-N\(^6\)-phenylisopropyladenosine (R-PIA), 5'-Nethylcarboxamidoadenosine (NECA), and S-N\(^6\)-phenylisopropyladenosine (S-PIA) were 0.10, 0.14, 0.24 and 12.9 \(\mu\)M, respectively. DPCPX shifted the R-PIA concentration-response curve to the right in a concentration-dependent manner with a K\(_B\)-value of 8.1 nM, indicating competitive antagonism. [\(^3\)H]DPCPX showed a saturable binding to atrial membranes with a Bmax·value of 227 fmol/mg protein and a K\(_D\)-value of 1.3 nM. Competition experiments showed a similar potency for the three agonists CCPA, R-PIA and NECA. S-PIA is 200 times less potent than R-PIA. Our results suggest that the K\(^+\) channel-coupled adenosine receptor in guinea pig atria is of an A\(_1\) subtype.}, subject = {Toxikologie}, language = {en} }