@article{SchneiderSchauliesSchumacherWiggeretal.2021, author = {Schneider-Schaulies, Sibylle and Schumacher, Fabian and Wigger, Dominik and Sch{\"o}l, Marie and Waghmare, Trushnal and Schlegel, Jan and Seibel, J{\"u}rgen and Kleuser, Burkhard}, title = {Sphingolipids: effectors and Achilles heals in viral infections?}, series = {Cells}, volume = {10}, journal = {Cells}, number = {9}, issn = {2073-4409}, doi = {10.3390/cells10092175}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-245151}, year = {2021}, abstract = {As viruses are obligatory intracellular parasites, any step during their life cycle strictly depends on successful interaction with their particular host cells. In particular, their interaction with cellular membranes is of crucial importance for most steps in the viral replication cycle. Such interactions are initiated by uptake of viral particles and subsequent trafficking to intracellular compartments to access their replication compartments which provide a spatially confined environment concentrating viral and cellular components, and subsequently, employ cellular membranes for assembly and exit of viral progeny. The ability of viruses to actively modulate lipid composition such as sphingolipids (SLs) is essential for successful completion of the viral life cycle. In addition to their structural and biophysical properties of cellular membranes, some sphingolipid (SL) species are bioactive and as such, take part in cellular signaling processes involved in regulating viral replication. It is especially due to the progress made in tools to study accumulation and dynamics of SLs, which visualize their compartmentalization and identify interaction partners at a cellular level, as well as the availability of genetic knockout systems, that the role of particular SL species in the viral replication process can be analyzed and, most importantly, be explored as targets for therapeutic intervention.}, language = {en} } @article{AvotadeLiraSchneiderSchaulies2019, author = {Avota, Elita and de Lira, Maria Nathalia and Schneider-Schaulies, Sibylle}, title = {Sphingomyelin breakdown in T cells: role of membrane compartmentalization in T cell signaling and interference by a pathogen}, series = {Frontiers in Cell and Developmental Biology}, volume = {7}, journal = {Frontiers in Cell and Developmental Biology}, number = {152}, issn = {2296-634X}, doi = {10.3389/fcell.2019.00152}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-199168}, year = {2019}, abstract = {Sphingolipids are major components of cellular membranes, and at steady-state level, their metabolic fluxes are tightly controlled. On challenge by external signals, they undergo rapid turnover, which substantially affects the biophysical properties of membrane lipid and protein compartments and, consequently, signaling and morphodynamics. In T cells, external cues translate into formation of membrane microdomains where proximal signaling platforms essential for metabolic reprograming and cytoskeletal reorganization are organized. This review will focus on sphingomyelinases, which mediate sphingomyelin breakdown and ensuing ceramide release that have been implicated in T-cell viability and function. Acting at the sphingomyelin pool at the extrafacial or cytosolic leaflet of cellular membranes, acid and neutral sphingomyelinases organize ceramide-enriched membrane microdomains that regulate T-cell homeostatic activity and, upon stimulation, compartmentalize receptors, membrane proximal signaling complexes, and cytoskeletal dynamics as essential for initiating T-cell motility and interaction with endothelia and antigen-presenting cells. Prominent examples to be discussed in this review include death receptor family members, integrins, CD3, and CD28 and their associated signalosomes. Progress made with regard to experimental tools has greatly aided our understanding of the role of bioactive sphingolipids in T-cell biology at a molecular level and of targets explored by a model pathogen (measles virus) to specifically interfere with their physiological activity.}, language = {en} } @article{AvotaSchneiderSchaulies2014, author = {Avota, Elita and Schneider-Schaulies, Sibylle}, title = {The Role of Sphingomyelin Breakdown in Measles Virus Immunmodulation}, series = {Cellular Physiology and Biochemistry}, volume = {34}, journal = {Cellular Physiology and Biochemistry}, number = {1}, issn = {1015-8987}, doi = {10.1159/000362981}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120004}, pages = {20-26}, year = {2014}, abstract = {Measles virus (MV) efficiently causes generalized immunosuppression which accounts to a major extent for cases of measles-asscociated severe morbidity and mortality. MV infections alter many functions of antigen presenting cells (APC) (dendritic cells (DCs)) and lymphocytes, yet many molecular targets of the virus remain poorly defined. Cellular interactions and effector functions of DCs and lymphocytes are regulated by surface receptors. Associating with other proteins involved in cell signaling, receptors form part of receptosomes that respond to and transmit external signals through dynamic interctions with the cytoskeleton. Alterations in the composition and metabolism of membrane sphingolipids have a substantial impact on both processes. In this review we focus on the regulation of sphingomyelinase activity and ceramide release in cells exposed to MV and discuss the immunosuppressive role of sphingomyelin breakdown induced by MV.}, language = {en} } @article{AvotaGassertSchneiderSchaulies2011, author = {Avota, Elita and Gassert, Evelyn and Schneider-Schaulies, Sibylle}, title = {Cytoskeletal Dynamics: Concepts in Measles Virus Replication and Immunomodulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69092}, year = {2011}, abstract = {In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level.}, subject = {Virologie}, language = {en} }