@phdthesis{Nieberler2019, author = {Nieberler, Matthias}, title = {The physiological role of autoproteolysis of the Adhesion GPCR Latrophilin/dCIRL}, doi = {10.25972/OPUS-16589}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165894}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {G protein-coupled receptors of the Adhesion family (aGPCRs) comprise the second largest group within the GPCR realm with over 30 mammalian homologs. They contain a unique structure with unusually large extracellular domains (ECDs) holding many structural folds known to mediate cell-cell and cell-matrix interactions. Furthermore, aGPCRs undergo autoproteolytic cleavage at the GPCR proteolysis site (GPS), an integral portion of the GPCR autoproteolysis inducing (GAIN) domain. Thus far, it is largely unknown if and how self-cleavage affects aGPCR activation and signaling and how these signals may shape the physiological function of cells. Latrophilin, alternatively termed the calcium-independent receptor of α-latrotoxin (CIRL) constitutes a highly conserved, prototypic aGPCR and has been assigned roles in various biological processes such as synaptic development and maturation or the regulation of neurotransmitter release. The Drosophila melanogaster homolog dCIRL is found in numerous sensory neurons including the mechanosensory larval pentascolopidial chordotonal organs (CHOs), which rely on dCIRL function in order to sense mechanical cues and to modulate the mechanogating properties of present ionotropic receptors. This study reveals further insight into the broad distribution of dCirl expression throughout the larval central nervous system, at the neuromuscular junction (NMJ), as well as subcellular localization of dCIRL in distal dendrites and cilia of chordotonal neurons. Furthermore, targeted mutagenesis which disabled GPS cleavage of dCIRL left intracellular trafficking in larval CHOs unaffected and proved autoproteolysis is not required for dCIRL function in vivo. However, substitution of a threonine residue, intrinsic to a putative tethered agonist called Stachel that has previously been documented for several other aGPCRs, abrogated receptor function. Conclusively, while this uncovered the presence of Stachel in dCIRL, it leaves the question about the biological relevance of the predetermined breaking point at the GPS unanswered. In an independent approach, the structure of the "Inter-RBL-HRM" (IRH) region, the region linking the N-terminal Rhamnose-binding lectin-like (RBL) and the hormone receptor motif (HRM) domains of dCIRL, was analyzed. Results suggest random protein folding, excessive glycosylation, and a drastic expansion of the size of IRH. Therefore, the IRH might represent a molecular spacer ensuring a certain ECD dimension, which in turn may be a prerequisite for proper receptor function. Taken together, the results of this study are consistent with dCIRL's mechanoceptive faculty and its role as a molecular sensor that translates mechanical cues into metabotropic signals through a yet undefined Stachel-dependent mechanism.}, subject = {Latrophilin}, language = {en} }