@phdthesis{Truestedt2016, author = {Tr{\"u}stedt, Jonas Elias}, title = {Long-wavelength radio observations of blazars with the Low-Frequency Array (LOFAR)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Aktive Galaxienkerne (AGN) geh{\"o}ren zu den hellsten Objekten in unserem Universum. Diese Galaxien werden als aktiv bezeichnet, da ihre Zentralregion heller ist als alle Sterne in einer Galaxie zusammen beitragen k{\"o}nnten. Das Zentrum besteht aus einem supermassiven schwarzen Loch, das von einer Akkretionsscheibe und weiter außerhalb von einem Torus aus Staub umgeben ist. Diese AGN k{\"o}nnen {\"u}ber das ganze elektromagnetische Spektrum verteilt gefunden werden, von Radiowellen {\"u}ber Wellenl{\"a}ngen im optischen und R{\"o}ntgenbereich bis hin zur \$\gamma\$-Strahlung. Allerdings sind nicht alle Objekte bei jeder Wellenl{\"a}nge detektierbar. In dieser Arbeit werden {\"u}berwiegend Blazare bei niedrigen Radiofrequenzen untersucht. Blazare geh{\"o}ren zu den radio-lauten AGN, welche {\"u}blicherweise stark kollimierte Jets senkrecht zur Akkretionsscheibe aussenden. Bei Blazaren sind diese Jets in die Richtung des Beobachters gerichtet und ihre Emissionen sind stark variabel. \\ AGN werden anhand ihres Erscheinungsbildes verschiedenen Untergruppen zugeordnet. Diese Untergruppen werden in einem vereinheitlichen AGN Modell zusammengef{\"u}hrt, welches besagt, dass diese Objekte sich nur in ihrer Luminosit{\"a}t und ihrem Winkel zur Sichtlinie unterscheiden. Blazare sind diejenigen Objekte, deren Jets in unsere Sichtrichtung zeigen, w{\"a}hrend die Objekte deren Jets eher senkrecht zur Sichtlinie orientiert sind als Radiogalaxien bezeichnet werden. Daraus folgt, dass Blazare die Gegenst{\"u}cke zu Radiogalaxien mit einem anderen Winkel zur Sichtlinie sind. Diese Beziehung soll unter anderem in dieser Arbeit untersucht werden. \\ Nach ihrer Entdeckung in den 1940er Jahren wurden die aktiven Galaxien bei allen zug{\"a}nglichen Wellenl{\"a}ngen untersucht. Durch die Entwicklung von Interferometern aus Radioteleskopen, welche eine erh{\"o}hte Aufl{\"o}sung bieten, konnten die Beobachtungen stark verbessert werden. In den letzten 20 Jahren wurden viele AGN regelm{\"a}ßig beobachtet. Dies erfolgte unter anderem durch Programme wie dem MOJAVE Programm, welches 274 AGNs regelm{\"a}ßig mithilfe der Technik der ``Very Long Baseline Interferometry" (VLBI) beobachtet. Durch diese Beobachtungen konnten Informationen zur Struktur und Entwicklung der AGN und Jets gesammelt werden. Allerdings sind die Prozesse zur Bildung von Jets und deren Kollimation noch nicht vollst{\"a}ndig bekannt. Durch relativistische Effekte ist es schwierig die eigentlichen Gr{\"o}ßen der Jets anstelle der scheinbaren zu messen. Um die intrinsische Energie von Jets zu messen, sollen die ausgedehnten Emissionsregionen untersucht werden, in denen die Jets enden und mit dem Intergalaktischen Medium interagieren. Beobachtungen bei niedrigen Radiofrequenzen sind empfindlicher um solche ausgedehnte, diffuse Emissionsregionen zu detektieren. \\ Seit Dezember 2012 ist ein neues Radioteleskop f{\"u}r niedrige Frequenzen in Betrieb, dessen Stationen aus Dipolantennen besteht. Die meisten dieser Stationen sind in den Niederlanden verteilt (38 Stationen) und werden durch 12 internationale Stationen in Deutschland, Frankreich, Schweden, Polen und England erg{\"a}nzt. Dieses Instrument tr{\"a}gt den Namen ``Low Frequency Array'' (LOFAR). LOFAR bietet die M{\"o}glichkeit bei Frequenzen von 30--250 MHz bei einer h{\"o}heren Aufl{\"o}sung als bisherige Radioteleskope zu beobachten (Winkelaufl{\"o}sungen unter 1 arcsec f{\"u}r das gesamte Netzwerk aus Teleskopen). \\ Diese Arbeit behandelt die Ergebnisse von Blazaruntersuchungen mithilfe von LOFAR-Beobachtungen. Daf{\"u}r wurden AGNs aus dem MOJAVE Programm verwendet um von den bisherigen Multiwellenl{\"a}ngen-Beobachtungen und Untersuchungen der Kinematik zu profitieren. Das ``Multifrequency Snapshot Sky Survey'' (MSSS) Projekt hat den gesamten Nordhimmel mit kurzen Beobachtungen abgerastert. Aus dem daraus resultierenden vorl{\"a}ufigen Katalog wurden die Flussdichten und Spektralindizes f{\"u}r MOJAVE-Blazare untersucht. In den kurzen Beobachtungen von MSSS sind nur die Stationen in den Niederlanden verwendet worden, wodurch Aufl{\"o}sung und Sensitivit{\"a}t begrenzt sind. F{\"u}r die Erstellung des vorl{\"a}ufigen Kataloges wurde die Aufl{\"o}sung auf \$\sim\$120 arcsec beschr{\"a}nkt. Ein weiterer Vorteil der MOJAVE Objekte ist die regelm{\"a}ßige Beobachtung der AGN mit dem ``Owens Vally Radio Observatory'' zur Erstellung von Lichtkurven bei 15 GHz. Dadurch ist es m{\"o}glich nahezu zeitgleiche Flussdichtemessungen bei 15 GHz zu den entsprechenden MSSS-Beobachtungen zu bekommen. Da diese Beobachtungen zu {\"a}hnlichen Zeitpunkten durchgef{\"u}hrt wurden sind diese Flussdichten weniger von der Variabilit{\"a}t der Blazare beeinflusst. Die Spektralindizes berechnet aus den Flussdichten von MSSS und OVRO k{\"o}nnen verwendet werden um den Anteil an ausgedehnter Emission der AGNs abzusch{\"a}tzen. \\ Im Vergleich der Flussdichten aus dem MSSS Katalog mit den Beobachtungen von OVRO f{\"a}llt auf, dass die Flussdichten bei niedrigen Frequenzen tendenziell h{\"o}her sind, was durch den h{\"o}heren Anteil an ausgedehnter Struktur zu erwarten ist. Die Spektralindexverteilung zwischen MSSS und OVRO zeigt ihren h{\"o}chsten Wert bei \$\sim-0.2\$. In der Verteilung existieren Objekte mit steilerem Spektralindex durch den h{\"o}heren Anteil von ausgedehnter Emission in der Gesamtflussdichte, doch {\"u}ber die H{\"a}lfte der untersuchten Objekte besitzt flache Spektralindizes. Die flachen Spektralindizes bedeuten, dass die Emissionen dieser Objekte gr{\"o}ßtenteils von relativistischen Effekten beeinflusst sind, die schon aus Beobachtungen bei GHz-Frequenzen bekannt sind. \\ Durch neue Auswertung der MSSS Beobachtungsdaten konnten Bilder bei einer verbesserten Aufl{\"o}sung von \$\sim\$20--30 arcsec erstellt werden, wodurch bei einigen Blazaren ausgedehnte Struktur detektiert werden konnte. Diese h{\"o}her aufgel{\"o}sten Bilder sind allerdings nicht komplett kalibriert und k{\"o}nnen somit nur f{\"u}r strukturelle Informationen verwendet werden. Die {\"U}berarbeitung der Beobachtungsdaten konnte f{\"u}r 93 Objekte f{\"u}r ein Frequenzband durchgef{\"u}hrt werden. F{\"u}r 45 der 93 Objekte konnten sogar alle vorhandenen Frequenzb{\"a}nder {\"u}berarbeitet werden und dadurch gemittelte Bilder erstellt werden. Diese Bilder werden in dieser Arbeit vorgestellt. Die resultierenden Bilder mit verbesserter Aufl{\"o}sung wurden verwendet um Objekte auszuw{\"a}hlen, die mit allen LOFAR-Stationen beobachtet und auf ausgedehnte Struktur untersucht werden k{\"o}nnen. \\ Im zweiten Teil der Arbeit werden die Ergebnisse von internationalen LOFAR Beobachtungen von vier Blazaren pr{\"a}sentiert. Da sich die Auswertung und Kalibration von internationalen LOFAR Beobachtungen noch in der Entwicklung befindet, wurde ein Schwerpunkt auf die Kalibration und deren Beschreibung gelegt. Die Kalibration kann zwar noch verbessert werden, aber die Bilder aus der angewandten Kalibration erreichen eine Aufl{\"o}sung von unter 1 arcsec. Die Struktur der untersuchten vier Blazare entspricht den Erwartungen f{\"u}r Radiogalaxien unter einem anderen Sichtwinkel. Durch die gemessenen Flussdichten der ausgedehnten Struktur aus den Helligkeitsverteilungen konnte die Luminosit{\"a}t der ausgedehnten Emissionen berechnet werden. Im Vergleich mit den Luminosit{\"a}ten, die von Radiogalaxien bekannt sind, entsprechen auch diese Werte den Erwartungen des vereinheitlichten AGN Modells. \\ Durch die in dieser Arbeit vorgestellte Kalibration k{\"o}nnen noch mehr Blazare mit LOFAR inklusive den internationalen Stationen beobachtet werden und somit Bilder der Struktur bei {\"a}hnlicher Aufl{\"o}sung erstellt werden. Durch eine erh{\"o}hte Anzahl von untersuchten Blazaren k{\"o}nnten anschließend auch statistisch signifikante Ergebnisse erzielt werden.\\}, subject = {Blazar}, language = {en} }