@phdthesis{Schiebel2013, author = {Schiebel, Johannes}, title = {Structure-Based Drug Design on Enzymes of the Fatty Acid Biosynthesis Pathway}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69239}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {W{\"a}hrend die Wirkung der meisten gebr{\"a}uchlichen Antibiotika auf einer Beeintr{\"a}chtigung wichtiger bakterieller Prozesse beruht, wirken manche Substanzen durch die St{\"o}rung der Zellmembran-Struktur. Da Fetts{\"a}uren ein essentieller Bestandteil von Membran-Phospholipiden sind, stellt die bakterielle Fetts{\"a}urebiosynthese II (FAS-II) einen relativ wenig erforschten, aber dennoch vielversprechenden Angriffspunkt f{\"u}r die Entwicklung neuer Antibiotika dar. Das wichtige Antituberkulotikum Isoniazid blockiert die mykobakterielle Fetts{\"a}urebiosynthese und ruft dadurch morphologische {\"A}nderungen sowie letztlich die Lyse des Bakteriums hervor. Eine wichtige Erkenntnis war, dass Isoniazid den letzten Schritt des FAS-II Elongationszyklus inhibiert, der durch die Enoyl-ACP Reduktase katalysiert wird. Darauf aufbauend wurden mehrere Programme ins Leben gerufen, die sich zum Ziel gesetzt hatten, neue Molek{\"u}le zu entwickeln, welche dieses Protein verschiedener Pathogene hemmen. Die S. aureus Enoyl-ACP Reduktase (saFabI) ist von besonders großem Interesse, da drei vielversprechende Inhibitoren dieses Proteins entwickelt werden konnten, die momentan in klinischen Studien eingehend untersucht werden. Trotz dieser Erfolgsaussichten waren zum Zeitpunkt, als die vorliegenden Arbeiten aufgenommen wurden, keine Kristallstrukturen von saFabI {\"o}ffentlich verf{\"u}gbar. Daher war es eines der Hauptziele dieser Doktorarbeit, auf der Basis von kristallographischen Experimenten atomar aufgel{\"o}ste Modelle f{\"u}r dieses wichtige Protein zu erzeugen. Durch die Entwicklung einer verl{\"a}sslichen Methode zur Kristallisation von saFabI im Komplex mit NADP+ und Diphenylether-Inhibitoren konnten Kristallstrukturen von 17 verschiedenen tern{\"a}ren Komplexen gel{\"o}st werden. Weitere kristallographische Experimente ergaben zwei apo-Strukturen sowie zwei Strukturen von saFabI im Komplex mit NADPH und 2-Pyridon-Inhibitoren. Basierend auf der nun bekannten saFabI-Struktur konnten Molekulardynamik-Simulationen durchgef{\"u}hrt werden, um zus{\"a}tzliche Erkenntnisse {\"u}ber die Flexibilit{\"a}t dieses Proteins zu erhalten. Die so gewonnenen Informationen {\"u}ber die Struktur und Beweglichkeit des Enzyms dienten in Folge als ideale Grundlage daf{\"u}r, den Erkennungsprozess von Substrat und Inhibitor zu verstehen. Besonders bemerkenswert dabei ist, dass die verschiedenen saFabI Kristallstrukturen Momentaufnahmen entlang der Reaktionskoordinate der Ligandenbindung und des Hydrid-Transfers repr{\"a}sentieren. Dabei verschließt der so genannte Substratbindungsloop das aktive Zentrum des Enzyms allm{\"a}hlich. Die außergew{\"o}hnlich hohe Mobilit{\"a}t von saFabI konnte durch molekulardynamische Simulationen best{\"a}tigt werden. Dies legt nahe, dass die beobachteten {\"A}nderungen der Konformation tats{\"a}chlich an der Aufnahme und Umsetzung des Substrates beteiligt sind. Eine Kette von Wassermolek{\"u}len zwischen dem aktiven Zentrum und einer wassergef{\"u}llten Kavit{\"a}t im Inneren des Tetramers scheint f{\"u}r die Beweglichkeit des Substratbindungsloops und somit f{\"u}r die katalysierte Reaktion von entscheidender Bedeutung zu sein. Außerdem wurde die erstaunliche Beobachtung gemacht, dass der adaptive Substratbindungsprozess mit einem Dimer-Tetramer {\"U}bergang gekoppelt ist, welcher die beobachtete positive Kooperativit{\"a}t der Ligandenbindung erkl{\"a}ren kann. Alles in allem weist saFabI im Vergleich zu FabI Proteinen aus anderen Organismen mehrere außergew{\"o}hnliche Eigenschaften auf, die f{\"u}r die Synthese von verzweigten Fetts{\"a}uren n{\"o}tig sein k{\"o}nnten, welche wiederum f{\"u}r die {\"U}berlebensf{\"a}higkeit von S. aureus im Wirt von Bedeutung sind. Diese Erkenntnis k{\"o}nnte erkl{\"a}ren, warum S. aureus selbst bei Anwesenheit von exogenen Fetts{\"a}uren von FAS-II Inhibitoren abget{\"o}tet werden kann. Somit k{\"o}nnen die gewonnenen atomaren saFabI Modelle einen entscheidenden Beitrag zur Entwicklung neuer Hemmstoffe dieses validierten Angriffszieles leisten. Tats{\"a}chlich konnten die neuen Strukturen genutzt werden, um die Bindungsst{\"a}rken sowie die Verweilzeiten verschiedener saFabI Inhibitoren molekular zu erkl{\"a}ren. Die Struktur von saFabI im Komplex mit dem 2-Pyridon Inhibitor CG400549 hingegen enth{\"u}llte spezifische Wechselwirkungen in der geweiteten Bindetasche des S. aureus Enzyms, welche das geringe Aktivit{\"a}tsspektrum dieses derzeit klinisch erprobten Inhibitors erkl{\"a}ren. Diese Studien schaffen somit eine ideale Voraussetzung f{\"u}r die Entwicklung neuer wirksamer saFabI Inhibitoren, was am Beispiel des 4-Pyridons PT166 belegt werden kann. Im Rahmen der vorliegenden Dissertation konnten außerdem die Strukturen des Enzyms KasA im Komplex mit mehreren Derivaten des Naturstoffs Thiolactomycin gel{\"o}st werden.}, subject = {Staphylococcus aureus}, language = {en} } @phdthesis{Waltenberger2012, author = {Waltenberger, Constanze Ricarda Maria}, title = {Virtuelles Screening nach einer neuen Inhibitorklasse der Enoyl-ACP-Reduktase InhA aus Mycobacterium tuberculosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Zahl der Tuberkuloseerkrankungen ist in den letzten Jahrzehnten weltweit gestiegen. Da es an innovativen Antituberkulotika mangelt, werden nach wie vor Medikamente der ersten Generation eingesetzt. Das wachsende Problem sind multi-resistente und extrem-resistente Bakterienst{\"a}mme, die kaum oder gar nicht auf die medikament{\"o}se Therapie ansprechen. Charakteristisch f{\"u}r M. tuberculosis ist eine dicke Zellwand. Der Aufbau der Zellwand erm{\"o}glicht es dem Bakterium in den Makrophagen zu persistieren und sich dort zu vermehren. Die Zellwand ist reich an Mykols{\"a}uren und so wenig durchl{\"a}ssig f{\"u}r Fremdstoffe. Das mykobakterielle Zellwandskelett kann man in zwei Teile unterteilen, den Zellwandkern und die {\"a}ußere Lipidh{\"u}lle. Die freien Lipide der {\"a}ußeren Lipidh{\"u}lle dienen als Signalmolek{\"u}le im Krankheitsverlauf und interkalieren mit den Mykols{\"a}uren des Zellwandkerns. M. tuberculosis besitzt f{\"u}r die Fetts{\"a}urebiosynthese zwei Enzymkomplexe: Die Typ-I-Fetts{\"a}uresynthase, die auch in S{\"a}ugetieren zu finden ist, produziert Fetts{\"a}uren von C16- bis C26-Kettenl{\"a}nge, die dann in der Typ-II-Fetts{\"a}uresynthase (FAS-II) zu Meromykols{\"a}uren verl{\"a}ngert werden. Im Synthesezyklus des FAS-II sind mehrere monofunktionale Enzyme hintereinander geschaltet. Wird eines dieser Enzyme in seiner Funktion gest{\"o}rt, kumulieren Zwischenprodukte und ben{\"o}tigte Zellwandlipide k{\"o}nnen nicht synthetisiert werden. In der Folge wird die Zellwand instabil und das Bakterium stirbt. Die mykobakterielle Lipidbiosynthese ist somit ein ideales Target f{\"u}r die Entwicklung neuer Antituberkulotika. Ziel dieser Arbeit war es, eine neue Inhibitorklasse des FAS-II Enzyms InhA des M. tuberculosis mittels virtuellem Screening zu finden. F{\"u}r das virtuelle Screening wurden drei aufeinander aufbauende Pharmakophorhypothesen entwickelt und mit diesen zwei unabh{\"a}ngige Datenbanken durchsucht. Als Grundlage f{\"u}r die Berechnungen des virtuellen Screenings diente die PDB R{\"o}ntgenkristallstruktur 2h7m mit dem Liganden 1-Cyclohexyl-N-(3,5-dichlorophenyl)-5-oxopyrrolidin-3-carboxamid. F{\"u}r die Erstellung der Pharmakophorhypothesen wurden zuerst die Strukturen des Enzyms mit und ohne Ligand bez{\"u}glich ihrer Konformationsunterschiede vor allem im Bereich der Bindetasche analysiert. Als n{\"a}chstes wurden die Wechselwirkungen des Liganden mit den Aminos{\"a}uren der Bindetasche und dem Cofaktor n{\"a}her analysiert und die verschiedenen Wechselwirkungsarten hinsichtlich ihrer Relevanz f{\"u}r eine inhibitorische Aktivit{\"a}t beurteilt. Schließlich wurde eine Bindetaschenanalyse durchgef{\"u}hrt und Hotspots f{\"u}r unterschiedliche chemische Funktionalit{\"a}ten berechnet. F{\"u}r das Datenbankenscreening wurden das ZINC 'drug-like' Subset (2005) und CCGs MOE 2006 Vendor Compound 3D Collection verwendet, beides Datenbanken exklusiv kommerziell erh{\"a}ltlicher Verbindungen. Das ZINC 'drug-like' Subset wurde {\"u}ber einen f{\"u}r InhA individuell angepassten hierarchischen Filter numerisch reduziert. Von den verbleibenden Verbindungen wurde eine Konformerendatenbank berechnet. Die MOE 2006 Vendor Compound 3D Collection lag bereits als Konformerendatenbank vor und wurde f{\"u}r das Screening 'as-is' verwendet. Mit den Pharmakophorhypothesen I und II wurde das reduzierte ZINC 'drug-like' Subset gescreent. F{\"u}r die Treffer wurden Fingerprints berechnet, sie danach mithilfe des Tanimotokoeffizienten nach ihrer {\"A}hnlichkeit in Cluster eingeteilt und visuell analysiert; 149 Verbindungen wurden f{\"u}r die Dockingsimulationen ausgew{\"a}hlt. Die MOE Konformerendatenbank wurde ebenso {\"u}ber einen f{\"u}r InhA individuell angepassten hierarchischen Filter numerisch reduziert und mit der Pharmakophorhypothese III gescreent, 28 Verbindungen wurden f{\"u}r die Dockingsimulationen ausgew{\"a}hlt. Die Dockingsimulationen wurden mit den Programmen MOE Dock und Autodock durchgef{\"u}hrt. Die Ergebnisse wurden numerisch ausgewertet und innerhalb der Bindetasche relativ zur jeweiligen zugrunde liegenden Pharmakophorhypothese visuell analysiert; 27 Substanzen wurden schließlich f{\"u}r die Testungen ausgew{\"a}hlt. Die Testungen erfolgten mit einem enzymatischen Assay und einem Assay an attenuierten M. tuberculosis F{\"u}r die Etablierung des enzymatischen Assays wurde das Enzym InhA mittels Vektortransformation in E. coli {\"u}berexprimiert und s{\"a}ulenchromatographisch aufgereinigt. Das Substrat 2-trans-Octenoyl-Coenzym A wurde synthetisiert. Von den 27 ausgew{\"a}hlten Substanzen waren 9 im Handel erh{\"a}ltlich und wurden schließlich auf ihre inhibitorische Aktivit{\"a}t getestet. Es wurden ein Thiazolidin-2,4-dion, ein 2-Thioxoimidazolidin-4-on und ein Sulfonamid als aktive Substanzen gefunden.}, subject = {Screening}, language = {de} }