@phdthesis{BruecknergebChristel2019, author = {Br{\"u}ckner [geb. Christel], Theresa}, title = {Novel application forms and setting mechanisms of mineral bone cements}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157045}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Calcium phosphate cements (CPC) represent valuable synthetic bone grafts, as they are self-setting, biocompatible, osteoconductive and in their composition similar to the inorganic phase of human bone. Due to their long shelf-life, neutral setting and since water is sufficient for setting, hydroxyapatite (HA) forming cements are processed in different paste formulations. Those comprise dual setting, Ca2+ binding and premixed cement systems. With dual setting formulations, both dissolution and precipitation of the cement raw powder occur simultaneously to the polymerization of water-soluble monomers to form a hydrogel. Chelating agents are able to form complexes with Ca2+ released from the raw powder. Premixed systems mostly contain the raw powder of the cement and a non-aqueous binder liquid which delays the setting reaction until application in the moist physiological environment. In the present work, two of those reaction mechanisms allowed the development of HA based cement applications. Drillable cements are of high clinical interest, as the quality of screw and plate osteosynthesis techniques can be improved by cement augmentation. A drillable, dual setting composite from HA and a poly(2-hydroxyethyl methacrylate) hydrogel was analyzed with respect to the influence of monomer content and powder-to-liquid ratio on setting kinetics and mechanical outcome. While the conversion to HA and crystal growth were constantly confined with increased monomer amount, a minimum concentration of 50 \% was required to see impressive ameliorations including a low bending modulus and high fracture energy at improved bending strength. Increasing the liquid amount enabled injection of the paste as well as drilling after 10 min of pre-setting. While classic bone wax formulations have drawbacks such as infection, inflammation, hindered osteogenesis and a lack of biodegradability, the as-presented premixed formulation is believed to exhibit outmatching properties. It consisted of HA raw powders and a non-aqueous, but water-miscible carrier liquid from poly(ethylene glycol) (PEG). The bone wax was proved to be cohesive and malleable, it withstood blood pressure conditions and among deposition in an aqueous environment, PEG was exchanged such that porous, nanocrystalline HA was formed. Incorporation of a model antibiotic proved the suitability of the novel bone wax formulation for drug release purposes. Prefabricated laminates from premixed carbonated apatite forming cement and poly(ε-caprolactone) fiber mats with defined pore architecture were presented as a potential approach for the treatment of 2-dimensional, curved cranial defects. They are flexible until application and were produced in a layer-by-layer approach from both components such that the polymer scaffold prevents the cement from flowing. It was demonstrated that solution electrospinning with a patterned collector for the fabrication of perforated fiber mats was suitable, as high fiber volume contents in combination with an appropriate interface enabled the successful fabrication of mechanically reinforced laminates. Mild immersion of the scaffolds under alkaline conditions additionally improved the interphase followed by an increase in bending-strength. Since few years, magnesium phosphate cements (MPC) have attracted increasing attention for bone replacement. Compared to CPC, MPC exhibit a higher degradation potential and high early strength and they release biologically valuable Mg2+. However, common systems offer some challenges while using them in non-classic cement formulations such as the need for foreign ion supply, the potential acidity of the reaction or the fast setting kinetics. Here, it was possible to develop a chelate-setting MPC paste with a broad spectrum of potential applications. The general mechanism of the novel setting principle was tested in a proof-of-principle manner. The cement paste consisted of farringtonite with differently concentrated phytic acid solution for chelate formation with Mg2+ from the raw powder. Adjusting the phytic acid content and adding a magnesium oxide as setting regulator to compensate its retarding effect resulted in drillable formulations. Additionally, there is a strong clinical demand for well working bone adhesives especially in a moist environment. Mostly the existing formulations are non-biodegradable. Ex vivo adhesion of the above presented MPC under wet conditions on bone demonstrated over a course of 7 d shear strengths of 0.8 MPa. Further, the hardened cement specimens showed a mass loss of 2 wt.\% within 24 d in an aqueous environment and released about 0.17 mg/g of osteogenic Mg2+ per day. Together with the demonstrated cytocompatibility towards human fetal osteoblasts, this cement system showed promising characteristics in terms of degradable biocements with special application purposes.}, subject = {Knochenzement}, language = {en} } @phdthesis{Heilig2018, author = {Heilig, Philipp}, title = {Biomechanische Evaluation neuartiger Knochenersatzmaterialien zur Therapie der Tibiakopfimpressionsfraktur}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171037}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Tibiakopfimpressionsfrakturen (AO 41-B2.2 - Schatzker III), welche aufgrund der demographischen Entwicklung in ihrer klinischen Relevanz zunehmen, erfordern zur bestm{\"o}glichen Frakturstabilisierung eine Schraubenosteosynthese sowie eine stabile metaphys{\"a}re Defektauff{\"u}llung mittels Knochenersatzmaterial, da anderenfalls ein sekund{\"a}rer Repositionsverlust mit konsekutiver Gonarthrose droht. Die hierbei eingesetzten Kalziumphosphatzemente bringen klinische Probleme wie geringe mechanische Stabilit{\"a}t, fehlende Bohrbarkeit, welche eine unvollst{\"a}ndige Defektauff{\"u}llung bedingt, ungewisse Resorption und un{\"u}berpr{\"u}fte Herstellerangaben mit sich. Diese Studie hatte daher zum Ziel, einen bohrbaren Kalziumphosphatzement und einen Magnesiumphosphatzement, welche als vielversprechende Alternativen aufgrund der klinischen Schwierigkeiten erscheinen, gegen Graftys® Quickset und ChronOS™ Inject biomechanisch einzuordnen und somit langfristig zu einer verbesserten Frakturversorgung beizutragen. Der erste Teil der Studie bestand aus einer reinen Materialpr{\"u}fung, in der mittels Zementquader Druckversuche und mittels Ausrissk{\"o}rper Zugversuche durchgef{\"u}hrt wurden. Im zweiten Teil wurde ein Frakturmodell f{\"u}r Impressionsfrakturen an Kunstknochen benutzt, um die Zemente hierbei zur Defektauff{\"u}llung zu verwenden und alleine sowie in Kombination mit einer Osteosynthese in der Jail-Technik zu testen. Es erfolgte eine zyklische Belastung mit 3000 Zyklen zu je 250 N sowie anschließend eine Maximalkrafttestung (Load-To-Failure) mit Hilfe einer Materialpr{\"u}fmaschine. Der Magnesiumphosphatzement zeigte die signifikant h{\"o}chste Kompressionsfestigkeit von 100,50 MPa ± 15,97 MPa und Ausrisskraft sowie im Verbund mit Knochen das geringste Displacement, h{\"o}chste Maximalkraft und Steifigkeit. Kalziumphosphat bohrbar wies aufgrund seines pseudoplastischen Verhaltens eine geringe biomechanische Stabilit{\"a}t und ein hohes Displacement auf, konnte aber durch seine Bohrbarkeit gegen{\"u}ber Graftys® Quickset bei Einsatz mit Schrauben einen Vorteil im Displacement erreichen und somit die Vorz{\"u}ge eines bohrbaren Knochenzements aufzeigen. ChronOS™ zeigte nach Aush{\"a}rtung im Wasserbad mit einer Kompressionsfestigkeit von 0,58 MPa ± 0,14 MPa eine niedrige biomechanische Stabilit{\"a}t und wurde daher nicht weiter untersucht. Da die Viskosit{\"a}t eines Zements neben anderen Faktoren f{\"u}r die Interdigitation mit den Spongiosahohlr{\"a}umen im Knochen verantwortlich ist, l{\"a}sst sich, sofern diese angemessen ist, R{\"u}ckschl{\"u}sse von der Materialpr{\"u}fung auf das Verhalten im Knochen ziehen. Magnesiumphosphatzemente erscheinen aufgrund ihrer hohen biomechanischen Stabilit{\"a}t und vermutlich guten Resorptionsrate als vielversprechende Alternative zu herk{\"o}mmlichen Kalziumphosphatzementen und bed{\"u}rfen daher einer weiteren {\"U}berpr{\"u}fung im Tierversuch.}, subject = {Knochenzement}, language = {de} }