@phdthesis{Birke2024, author = {Birke, Claudius B.}, title = {Low Mach and Well-Balanced Numerical Methods for Compressible Euler and Ideal MHD Equations with Gravity}, doi = {10.25972/OPUS-36330}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-363303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Physical regimes characterized by low Mach numbers and steep stratifications pose severe challenges to standard finite volume methods. We present three new methods specifically designed to navigate these challenges by being both low Mach compliant and well-balanced. These properties are crucial for numerical methods to efficiently and accurately compute solutions in the regimes considered. First, we concentrate on the construction of an approximate Riemann solver within Godunov-type finite volume methods. A new relaxation system gives rise to a two-speed relaxation solver for the Euler equations with gravity. Derived from fundamental mathematical principles, this solver reduces the artificial dissipation in the subsonic regime and preserves hydrostatic equilibria. The solver is particularly stable as it satisfies a discrete entropy inequality, preserves positivity of density and internal energy, and suppresses checkerboard modes. The second scheme is designed to solve the equations of ideal MHD and combines different approaches. In order to deal with low Mach numbers, it makes use of a low-dissipation version of the HLLD solver and a partially implicit time discretization to relax the CFL time step constraint. A Deviation Well-Balancing method is employed to preserve a priori known magnetohydrostatic equilibria and thereby reduces the magnitude of spatial discretization errors in strongly stratified setups. The third scheme relies on an IMEX approach based on a splitting of the MHD equations. The slow scale part of the system is discretized by a time-explicit Godunov-type method, whereas the fast scale part is discretized implicitly by central finite differences. Numerical dissipation terms and CFL time step restriction of the method depend solely on the slow waves of the explicit part, making the method particularly suited for subsonic regimes. Deviation Well-Balancing ensures the preservation of a priori known magnetohydrostatic equilibria. The three schemes are applied to various numerical experiments for the compressible Euler and ideal MHD equations, demonstrating their ability to accurately simulate flows in regimes with low Mach numbers and strong stratification even on coarse grids.}, subject = {Magnetohydrodynamik}, language = {en} } @phdthesis{Berberich2021, author = {Berberich, Jonas Philipp}, title = {Fluids in Gravitational Fields - Well-Balanced Modifications for Astrophysical Finite-Volume Codes}, doi = {10.25972/OPUS-21967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219679}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Stellar structure can -- in good approximation -- be described as a hydrostatic state, which which arises due to a balance between gravitational force and pressure gradient. Hydrostatic states are static solutions of the full compressible Euler system with gravitational source term, which can be used to model the stellar interior. In order to carry out simulations of dynamical processes occurring in stars, it is vital for the numerical method to accurately maintain the hydrostatic state over a long time period. In this thesis we present different methods to modify astrophysical finite volume codes in order to make them \emph{well-balanced}, preventing them from introducing significant discretization errors close to hydrostatic states. Our well-balanced modifications are constructed so that they can meet the requirements for methods applied in the astrophysical context: They can well-balance arbitrary hydrostatic states with any equation of state that is applied to model thermodynamical relations and they are simple to implement in existing astrophysical finite volume codes. One of our well-balanced modifications follows given solutions exactly and can be applied on any grid geometry. The other methods we introduce, which do no require any a priori knowledge, balance local high order approximations of arbitrary hydrostatic states on a Cartesian grid. All of our modifications allow for high order accuracy of the method. The improved accuracy close to hydrostatic states is verified in various numerical experiments.}, subject = {Fluid}, language = {en} } @phdthesis{Barsukow2018, author = {Barsukow, Wasilij}, title = {Low Mach number finite volume methods for the acoustic and Euler equations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159965}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Finite volume methods for compressible Euler equations suffer from an excessive diffusion in the limit of low Mach numbers. This PhD thesis explores new approaches to overcome this. The analysis of a simpler set of equations that also possess a low Mach number limit is found to give valuable insights. These equations are the acoustic equations obtained as a linearization of the Euler equations. For both systems the limit is characterized by a divergencefree velocity. This constraint is nontrivial only in multiple spatial dimensions. As the Jacobians of the acoustic system do not commute, acoustics cannot be reduced to some kind of multi-dimensional advection. Therefore first an exact solution in multiple spatial dimensions is obtained. It is shown that the low Mach number limit can be interpreted as a limit of long times. It is found that the origin of the inability of a scheme to resolve the low Mach number limit is the lack a discrete counterpart to the limit of long times. Numerical schemes whose discrete stationary states discretize all the analytic stationary states of the PDE are called stationarity preserving. It is shown that for the acoustic equations, stationarity preserving schemes are vorticity preserving and are those that are able to resolve the low Mach limit (low Mach compliant). This establishes a new link between these three concepts. Stationarity preservation is studied in detail for both dimensionally split and multi-dimensional schemes for linear acoustics. In particular it is explained why the same multi-dimensional stencils appear in literature in very different contexts: These stencils are unique discretizations of the divergence that allow for stabilizing stationarity preserving diffusion. Stationarity preservation can also be generalized to nonlinear systems such as the Euler equations. Several ways how such numerical schemes can be constructed for the Euler equations are presented. In particular a low Mach compliant numerical scheme is derived that uses a novel construction idea. Its diffusion is chosen such that it depends on the velocity divergence rather than just derivatives of the different velocity components. This is demonstrated to overcome the low Mach number problem. The scheme shows satisfactory results in numerical simulations and has been found to be stable under explicit time integration.}, subject = {Finite-Volumen-Methode}, language = {en} }