@phdthesis{Dirscherl2022, author = {Dirscherl, Mariel Christina}, title = {Remote Sensing of Supraglacial Lake Dynamics in Antarctica - Exploiting Methods from Artificial Intelligence for Derivation of Antarctic Supraglacial Lake Extents in Multi-Sensor Remote Sensing Data}, doi = {10.25972/OPUS-27950}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-279505}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {With accelerating global climate change, the Antarctic Ice Sheet is exposed to increasing ice dynamic change. During 1992 and 2017, Antarctica contributed ~7.6 mm to global sea-level-rise mainly due to ocean thermal forcing along West Antarctica and atmospheric warming along the Antarctic Peninsula (API). Together, these processes caused the progressive retreat of glaciers and ice shelves and weakened their efficient buttressing force causing widespread ice flow accelerations. Holding ~91\% of the global ice mass and 57.3 m of sea-level-equivalent, the Antarctic Ice Sheet is by far the largest potential contributor to future sea-level-rise. Despite the improved understanding of Antarctic ice dynamics, the future of Antarctica remains difficult to predict with its contribution to global sea-level-rise representing the largest uncertainty in current projections. Given that recent studies point towards atmospheric warming and melt intensification to become a dominant driver for future Antarctic ice mass loss, the monitoring of supraglacial lakes and their impacts on ice dynamics is of utmost importance. In this regard, recent progress in Earth Observation provides an abundance of high-resolution optical and Synthetic Aperture Radar (SAR) satellite data at unprecedented spatial and temporal coverage and greatly supports the monitoring of the Antarctic continent where ground-based mapping efforts are difficult to perform. As an automated mapping technique for supraglacial lake extent delineation in optical and SAR satellite imagery as well as a pan-Antarctic inventory of Antarctic supraglacial lakes at high spatial and temporal resolution is entirely missing, this thesis aims to advance the understanding of Antarctic surface hydrology through exploitation of spaceborne remote sensing. In particular, a detailed literature review on spaceborne remote sensing of Antarctic supraglacial lakes identified several research gaps including the lack of (1) an automated mapping technique for optical or SAR satellite data that is transferable in space and time, (2) high-resolution supraglacial lake extent mappings at intra-annual and inter-annual temporal resolution and (3) large-scale mapping efforts across the entire Antarctic continent. In addition, past method developments were found to be restricted to purely visual, manual or semi-automated mapping techniques hindering their application to multi-temporal satellite imagery at large-scale. In this context, the development of automated mapping techniques was mainly limited by sensor-specific characteristics including the similar appearance of supraglacial lakes and other ice sheet surface features in optical or SAR data, the varying temporal signature of supraglacial lakes throughout the year as well as effects such as speckle noise and wind roughening in SAR data or cloud coverage in optical data. To overcome these limitations, this thesis exploits methods from artificial intelligence and big data processing for development of an automated processing chain for supraglacial lake extent delineation in Sentinel-1 SAR and optical Sentinel-2 satellite imagery. The combination of both sensor types enabled to capture both surface and subsurface lakes as well as to acquire data during cloud cover or wind roughening of lakes. For Sentinel-1, a deep convolutional neural network based on residual U-Net was trained on the basis of 21,200 labeled Sentinel-1 SAR image patches covering 13 Antarctic regions. Similarly, optical Sentinel-2 data were collected over 14 Antarctic regions and used for training of a Random Forest classifier. Optical and SAR classification products were combined through decision-level fusion at bi-weekly temporal scale and unprecedented 10 m spatial resolution. Finally, the method was implemented as part of DLR's High-Performance Computing infrastructure allowing for an automated processing of large amounts of data including all required pre- and postprocessing steps. The results of an accuracy assessment over independent test scenes highlighted the functionality of the classifiers returning accuracies of 93\% and 95\% for supraglacial lakes in Sentinel-1 and Sentinel-2 satellite imagery, respectively. Exploiting the full archive of Sentinel-1 and Sentinel-2, the developed framework for the first time enabled the monitoring of seasonal characteristics of Antarctic supraglacial lakes over six major ice shelves in 2015-2021. In particular, the results for API ice shelves revealed low lake coverage during 2015-2018 and particularly high lake coverage during the 2019-2020 and 2020-2021 melting seasons. On the contrary, East Antarctic ice shelves were characterized by high lake coverage during 2016-2019 and extremely low lake coverage during the 2020-2021 melting season. Over all six investigated ice shelves, the development of drainage systems was revealed highlighting an increased risk for ice shelf instability. Through statistical correlation analysis with climate data at varying time lags as well as annual data on Southern Hemisphere atmospheric modes, environmental drivers for meltwater ponding were revealed. In addition, the influence of the local glaciological setting was investigated through computation of annual recurrence times of lakes. Over both ice sheet regions, the complex interplay between local, regional and large-scale environmental drivers was found to control supraglacial lake formation despite local to regional discrepancies, as revealed through pixel-based correlation analysis. Local control factors included the ice surface topography, the ice shelf geometry, the presence of low-albedo features as well as a reduced firn air content and were found to exert strong control on lake distribution. On the other hand, regional controls on lake evolution were revealed to be the amount of incoming solar radiation, air temperature and wind occurrence. While foehn winds were found to dictate lake evolution over the API, katabatic winds influenced lake ponding in East Antarctica. Furthermore, the regional near-surface climate was shown to be driven by large-scale atmospheric modes and teleconnections with the tropics. Overall, the results highlight that similar driving factors control supraglacial lake formation on the API and EAIS pointing towards their transferability to other Antarctic regions.}, subject = {Optische Fernerkundung}, language = {en} } @phdthesis{Ullmann2015, author = {Ullmann, Tobias}, title = {Characterization of Arctic Environment by Means of Polarimetric Synthetic Aperture Radar (PolSAR) Data and Digital Elevation Models (DEM)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115719}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The ecosystem of the high northern latitudes is affected by the recently changing environmental conditions. The Arctic has undergone a significant climatic change over the last decades. The land coverage is changing and a phenological response to the warming is apparent. Remotely sensed data can assist the monitoring and quantification of these changes. The remote sensing of the Arctic was predominantly carried out by the usage of optical sensors but these encounter problems in the Arctic environment, e.g. the frequent cloud cover or the solar geometry. In contrast, the imaging of Synthetic Aperture Radar is not affected by the cloud cover and the acquisition of radar imagery is independent of the solar illumination. The objective of this work was to explore how polarimetric Synthetic Aperture Radar (PolSAR) data of TerraSAR-X, TanDEM-X, Radarsat-2 and ALOS PALSAR and interferometric-derived digital elevation model data of the TanDEM-X Mission can contribute to collect meaningful information on the actual state of the Arctic Environment. The study was conducted for Canadian sites of the Mackenzie Delta Region and Banks Island and in situ reference data were available for the assessment. The up-to-date analysis of the PolSAR data made the application of the Non-Local Means filtering and of the decomposition of co-polarized data necessary. The Non-Local Means filter showed a high capability to preserve the image values, to keep the edges and to reduce the speckle. This supported not only the suitability for the interpretation but also for the classification. The classification accuracies of Non-Local Means filtered data were in average +10\% higher compared to unfiltered images. The correlation of the co- and quad-polarized decomposition features was high for classes with distinct surface or double bounce scattering and a usage of the co-polarized data is beneficial for regions of natural land coverage and for low vegetation formations with little volume scattering. The evaluation further revealed that the X- and C-Band were most sensitive to the generalized land cover classes. It was found that the X-Band data were sensitive to low vegetation formations with low shrub density, the C-Band data were sensitive to the shrub density and the shrub dominated tundra. In contrast, the L-Band data were less sensitive to the land cover. Among the different dual-polarized data the HH/VV-polarized data were identified to be most meaningful for the characterization and classification, followed by the HH/HV-polarized and the VV/VH-polarized data. The quad-polarized data showed highest sensitivity to the land cover but differences to the co-polarized data were small. The accuracy assessment showed that spectral information was required for accurate land cover classification. The best results were obtained when spectral and radar information was combined. The benefit of including radar data in the classification was up to +15\% accuracy and most significant for the classes wetland and sparse vegetated tundra. The best classifications were realized with quad-polarized C-Band and multispectral data and with co-polarized X-Band and multispectral data. The overall accuracy was up to 80\% for unsupervised and up to 90\% for supervised classifications. The results indicated that the shortwave co-polarized data show promise for the classification of tundra land cover since the polarimetric information is sensitive to low vegetation and the wetlands. Furthermore, co-polarized data provide a higher spatial resolution than the quad-polarized data. The analysis of the intermediate digital elevation model data of the TanDEM-X showed a high potential for the characterization of the surface morphology. The basic and relative topographic features were shown to be of high relevance for the quantification of the surface morphology and an area-wide application is feasible. In addition, these data were of value for the classification and delineation of landforms. Such classifications will assist the delineation of geomorphological units and have potential to identify locations of actual and future morphologic activity.}, subject = {Mackenzie-River-Delta}, language = {en} }