@phdthesis{Oberdorf2022, author = {Oberdorf, Felix}, title = {Design and Evaluation of Data-Driven Enterprise Process Monitoring Systems}, doi = {10.25972/OPUS-29853}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298531}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Increasing global competition forces organizations to improve their processes to gain a competitive advantage. In the manufacturing sector, this is facilitated through tremendous digital transformation. Fundamental components in such digitalized environments are process-aware information systems that record the execution of business processes, assist in process automation, and unlock the potential to analyze processes. However, most enterprise information systems focus on informational aspects, process automation, or data collection but do not tap into predictive or prescriptive analytics to foster data-driven decision-making. Therefore, this dissertation is set out to investigate the design of analytics-enabled information systems in five independent parts, which step-wise introduce analytics capabilities and assess potential opportunities for process improvement in real-world scenarios. To set up and extend analytics-enabled information systems, an essential prerequisite is identifying success factors, which we identify in the context of process mining as a descriptive analytics technique. We combine an established process mining framework and a success model to provide a structured approach for assessing success factors and identifying challenges, motivations, and perceived business value of process mining from employees across organizations as well as process mining experts and consultants. We extend the existing success model and provide lessons for business value generation through process mining based on the derived findings. To assist the realization of process mining enabled business value, we design an artifact for context-aware process mining. The artifact combines standard process logs with additional context information to assist the automated identification of process realization paths associated with specific context events. Yet, realizing business value is a challenging task, as transforming processes based on informational insights is time-consuming. To overcome this, we showcase the development of a predictive process monitoring system for disruption handling in a production environment. The system leverages state-of-the-art machine learning algorithms for disruption type classification and duration prediction. It combines the algorithms with additional organizational data sources and a simple assignment procedure to assist the disruption handling process. The design of such a system and analytics models is a challenging task, which we address by engineering a five-phase method for predictive end-to-end enterprise process network monitoring leveraging multi-headed deep neural networks. The method facilitates the integration of heterogeneous data sources through dedicated neural network input heads, which are concatenated for a prediction. An evaluation based on a real-world use-case highlights the superior performance of the resulting multi-headed network. Even the improved model performance provides no perfect results, and thus decisions about assigning agents to solve disruptions have to be made under uncertainty. Mathematical models can assist here, but due to complex real-world conditions, the number of potential scenarios massively increases and limits the solution of assignment models. To overcome this and tap into the potential of prescriptive process monitoring systems, we set out a data-driven approximate dynamic stochastic programming approach, which incorporates multiple uncertainties for an assignment decision. The resulting model has significant performance improvement and ultimately highlights the particular importance of analytics-enabled information systems for organizational process improvement.}, subject = {Operations Management}, language = {en} } @phdthesis{Meller2020, author = {Meller, Jan Maximilian}, title = {Data-driven Operations Management: Combining Machine Learning and Optimization for Improved Decision-making}, doi = {10.25972/OPUS-20604}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206049}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This dissertation consists of three independent, self-contained research papers that investigate how state-of-the-art machine learning algorithms can be used in combination with operations management models to consider high dimensional data for improved planning decisions. More specifically, the thesis focuses on the question concerning how the underlying decision support models change structurally and how those changes affect the resulting decision quality. Over the past years, the volume of globally stored data has experienced tremendous growth. Rising market penetration of sensor-equipped production machinery, advanced ways to track user behavior, and the ongoing use of social media lead to large amounts of data on production processes, user behavior, and interactions, as well as condition information about technical gear, all of which can provide valuable information to companies in planning their operations. In the past, two generic concepts have emerged to accomplish this. The first concept, separated estimation and optimization (SEO), uses data to forecast the central inputs (i.e., the demand) of a decision support model. The forecast and a distribution of forecast errors are then used in a subsequent stochastic optimization model to determine optimal decisions. In contrast to this sequential approach, the second generic concept, joint estimation-optimization (JEO), combines the forecasting and optimization step into a single optimization problem. Following this approach, powerful machine learning techniques are employed to approximate highly complex functional relationships and hence relate feature data directly to optimal decisions. The first article, "Machine learning for inventory management: Analyzing two concepts to get from data to decisions", chapter 2, examines performance differences between implementations of these concepts in a single-period Newsvendor setting. The paper first proposes a novel JEO implementation based on the random forest algorithm to learn optimal decision rules directly from a data set that contains historical sales and auxiliary data. Going forward, we analyze structural properties that lead to these performance differences. Our results show that the JEO implementation achieves significant cost improvements over the SEO approach. These differences are strongly driven by the decision problem's cost structure and the amount and structure of the remaining forecast uncertainty. The second article, "Prescriptive call center staffing", chapter 3, applies the logic of integrating data analysis and optimization to a more complex problem class, an employee staffing problem in a call center. We introduce a novel approach to applying the JEO concept that augments historical call volume data with features like the day of the week, the beginning of the month, and national holiday periods. We employ a regression tree to learn the ex-post optimal staffing levels based on similarity structures in the data and then generalize these insights to determine future staffing levels. This approach, relying on only few modeling assumptions, significantly outperforms a state-of-the-art benchmark that uses considerably more model structure and assumptions. The third article, "Data-driven sales force scheduling", chapter 4, is motivated by the problem of how a company should allocate limited sales resources. We propose a novel approach based on the SEO concept that involves a machine learning model to predict the probability of winning a specific project. We develop a methodology that uses this prediction model to estimate the "uplift", that is, the incremental value of an additional visit to a particular customer location. To account for the remaining uncertainty at the subsequent optimization stage, we adapt the decision support model in such a way that it can control for the level of trust in the predicted uplifts. This novel policy dominates both a benchmark that relies completely on the uplift information and a robust benchmark that optimizes the sum of potential profits while neglecting any uplift information. The results of this thesis show that decision support models in operations management can be transformed fundamentally by considering additional data and benefit through better decision quality respectively lower mismatch costs. The way how machine learning algorithms can be integrated into these decision support models depends on the complexity and the context of the underlying decision problem. In summary, this dissertation provides an analysis based on three different, specific application scenarios that serve as a foundation for further analyses of employing machine learning for decision support in operations management.}, subject = {Operations Management}, language = {en} } @phdthesis{Stein2019, author = {Stein, Nikolai Werner}, title = {Advanced Analytics in Operations Management and Information Systems: Methods and Applications}, doi = {10.25972/OPUS-19266}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192668}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Die digitale Transformation der Gesellschaft birgt enorme Potenziale f{\"u}r Unternehmen aus allen Sektoren. Diese verf{\"u}gen aufgrund neuer Datenquellen, wachsender Rechenleistung und verbesserter Konnektivit{\"a}t {\"u}ber rasant steigende Datenmengen. Um im digitalen Wandel zu bestehen und Wettbewerbsvorteile in Bezug auf Effizienz und Effektivit{\"a}t heben zu k{\"o}nnen m{\"u}ssen Unternehmen die verf{\"u}gbaren Daten nutzen und datengetriebene Entscheidungsprozesse etablieren. Dennoch verwendet die Mehrheit der Firmen lediglich Tools aus dem Bereich „descriptive analytics" und nur ein kleiner Teil der Unternehmen macht bereits heute von den M{\"o}glichkeiten der „predictive analytics" und „prescriptive analytics" Gebrauch. Ziel dieser Dissertation, die aus vier inhaltlich abgeschlossenen Teilen besteht, ist es, Einsatzm{\"o}glichkeiten von „prescriptive analytics" zu identifizieren. Da pr{\"a}diktive Modelle eine wesentliche Voraussetzung f{\"u}r „prescriptive analytics" sind, thematisieren die ersten beiden Teile dieser Arbeit Verfahren aus dem Bereich „predictive analytics." Ausgehend von Verfahren des maschinellen Lernens wird zun{\"a}chst die Entwicklung eines pr{\"a}diktiven Modells am Beispiel der Kapazit{\"a}ts- und Personalplanung bei einem IT-Beratungsunternehmen veranschaulicht. Im Anschluss wird eine Toolbox f{\"u}r Data Science Anwendungen entwickelt. Diese stellt Entscheidungstr{\"a}gern Richtlinien und bew{\"a}hrte Verfahren f{\"u}r die Modellierung, das Feature Engineering und die Modellinterpretation zur Verf{\"u}gung. Der Einsatz der Toolbox wird am Beispiel von Daten eines großen deutschen Industrieunternehmens veranschaulicht. Verbesserten Prognosen, die von leistungsf{\"a}higen Vorhersagemodellen bereitgestellt werden, erlauben es Entscheidungstr{\"a}gern in einigen Situationen bessere Entscheidungen zu treffen und auf diese Weise einen Mehrwert zu generieren. In vielen komplexen Entscheidungssituationen ist die Ableitungen von besseren Politiken aus zur Verf{\"u}gung stehenden Prognosen jedoch oft nicht trivial und erfordert die Entwicklung neuer Planungsalgorithmen. Aus diesem Grund fokussieren sich die letzten beiden Teile dieser Arbeit auf Verfahren aus dem Bereich „prescriptive analytics". Hierzu wird zun{\"a}chst analysiert, wie die Vorhersagen pr{\"a}diktiver Modelle in pr{\"a}skriptive Politiken zur L{\"o}sung eines „Optimal Searcher Path Problem" {\"u}bersetzt werden k{\"o}nnen. Trotz beeindruckender Fortschritte in der Forschung im Bereich k{\"u}nstlicher Intelligenz sind die Vorhersagen pr{\"a}diktiver Modelle auch heute noch mit einer gewissen Unsicherheit behaftet. Der letzte Teil dieser Arbeit schl{\"a}gt einen pr{\"a}skriptiven Ansatz vor, der diese Unsicherheit ber{\"u}cksichtigt. Insbesondere wird ein datengetriebenes Verfahren f{\"u}r die Einsatzplanung im Außendienst entwickelt. Dieser Ansatz integriert Vorhersagen bez{\"u}glich der Erfolgswahrscheinlichkeiten und die Modellqualit{\"a}t des entsprechenden Vorhersagemodells in ein „Team Orienteering Problem."}, subject = {Operations Management}, language = {en} }