@phdthesis{Taupp2005, author = {Taupp, Marcus}, title = {Biotransformation von N-Alkyl- und N,N-Dialkylarylaminen durch Bacillus megaterium}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17320}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In der vorliegenden Arbeit wurden Studien zur bakteriellen Biotransformation von N Alkyl- sowie N,N Dialkylarylaminen mit dem Ziel der arylischen Hydroxy-lierung und N-Dealkylierung durchgef{\"u}hrt. Bodenproben wurden einem Screening-Verfahren unterworfen, um selektiv nach Mikroorganismen zu suchen, die zu den genannten Biotransformationen f{\"a}hig waren. In einem Screeningverfahren wurden unter Verwendung von N-Ethyl-N methyl-anilin als Standardsubstrat aus Boden-proben Mikroorganismen isoliert und auf ihre F{\"a}higkeit zur Biotransformation {\"u}berpr{\"u}ft. Einer der isolierten St{\"a}mme setzte das zugef{\"u}hrte Substrat effizient und reproduzierbar zu drei Hauptprodukten um. Deren Strukturaufkl{\"a}rung erfolgte mittels Gaschromatographie-Massenspektrometrie (GC-MS) sowie anhand ein-dimensionaler NMR-Experimente (1H-NMR und 13C-NMR). Identifiziert wurden zwei hydroxylierte Produkte, N Ethyl-N-methyl-2-aminophenol und N-Ethyl-N-methyl-4-aminophenol, ferner wurde N-Ethylanilin, das N Demethylierungsprodukt gebildet. Die Identit{\"a}ten wurden durch synthetisierte Referenzsubstanzen best{\"a}tigt. Die ph{\"a}notypische und genotypische Charakterisierung dieses Bodenisolates als Bacillus megaterium erfolgte mittels mikroskopischer und f{\"a}rbetechnischer Methoden sowie der 16S rDNA-Sequenzierung. Zur eindeutigen Zuordnung wurde eine DNA/DNA-Hybridisierung gegen{\"u}ber dem Bacillus megaterium Type-strain (DSM 32, ATCC 14581t) durchgef{\"u}hrt. In einem erweiterten Substratscreening wurden die strukturellen Voraussetzungen zur Biotransformation von N-Alkyl- und N,N Dialkylarylaminen durch Bacillus megaterium ermittelt. Ausf{\"u}hrlich sind Sub-stituenteneffekte in Bezug auf Hydroxylierung und N-Dealkylierung untersucht worden. Sperrige und r{\"a}umlich große Substrate wie N,N,N´,N´-Tetramethyl-p,p´ benzidin als auch N,N,N´,N´-Tetramethyl-p-benzidin wurden nicht hydro-xyliert; allerdings fand bei beiden Substrate eine N-Demethylierung statt, wobei das Erstere st{\"a}rker N demethyliert wurde. Der Effekt des Austausches von Stickstoff gegen Phosphor in einigen Substraten wurde ebenfalls untersucht. So kamen Dimethylphenylphosphin und Diethylphenylphosphin mit Bacillus megaterium zur Anwendung. Phosphor-haltige Substrate wurden von B. megaterium nicht umgesetzt. Durch Versuche mit verschiedenen Induktoren und Repressoren wurde die Cytochrom-P-450-Aktvit{\"a}t des isolierten Bacillus megaterium bei der Bio-transformation von N,N-Diethylanilin untersucht. Hierbei wurde gezeigt, dass durch bestimmte Barbiturate die arylische Hydroxylierung als auch die N Deethylierung gesteigert wurden. Repression der Hydroxylierungs- und N Dealkylierungsaktivit{\"a}t zeigte sich durch Metyrapon, n-Octylamin, Pyridin und Imidazol. Die von Bacillus megaterium durchgef{\"u}hrte N-Demethylierung von N,N Dimethylanilin sowie N-Ethyl-N-methylanilin wurde im Hinblick auf Formaldehydbildung untersucht. Dies erfolgte im Inkubationsmedium direkt in-situ, mittels Cysteamin-Zugabe in das Medium, mit Umsetzung zu Thiazolidin. Anhand von Inkubationsversuchen mit den stabil-isotopenmarkierten Substraten N,N-Di-(trideuteromethyl)-anilin und N-Ethyl-N (trideuteromethyl)-anilin sowie N,N-Di-[methyl-13C]-anilin und N-Ethyl-N [methyl-13C]-anilin wurde anhand der Massenspektren der gebildeten Thiazolidine eindeutig festgestellt, dass die Methylgruppe als Formaldehyd abgespalten wird. Das Potential von Bacillus megaterium zur N-Dealkylierung wurde zur mikrobiellen N Demethylierung von nat{\"u}rlichem N-Methyl-methyl-anthranilat genutzt. Dadurch wurde der nat{\"u}rliche Aromastoff Methylanthranilat gewonnen. Zur Optimierung der bakteriellen Biotransformation von N-Methyl-methyl-anthranilat zu Methylanthranilat wurden in Bezug auf Wachstumsmedium, Inkubationstemperatur, pH-Wert des Inkubationsmediums sowie Substrat-konzentration verschiedene Variationen durchgef{\"u}hrt. Die antimikrobiellen Eigenschaften von N-Methyl-methylanthranilat und Methylanthranilat gegen{\"u}ber Bacillus megaterium wurden durch Hemmhofbildung sowie der Bestimmung der Inhibierungskonzentration im Fl{\"u}ssigmedium nachgewiesen. Sowohl Substrat als auch Produkt erwiesen sich in den unterschiedlichen Tests als antibakteriell. Im Anschluß an Versuche zur Immobilisierung, die zu geringeren Ausbeuten f{\"u}hrten, erfolgten schließlich Umsetzungen im Bioreaktor. Hierbei ließen sich die bei den Sch{\"u}ttelkulturen erhaltenen Ergebnisse direkt proportional auf den Fermenter {\"u}bertragen.}, subject = {Bacillus megaterium}, language = {de} } @phdthesis{Brandt2004, author = {Brandt, Rainer}, title = {Sauer katalysierte, unterkritisch getrocknete Resorcin-Formaldehyd-Aerogele und daraus abgeleitete Kohlenstoff-Aerogele}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15795}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Resorcin-Formaldehyd (RF) Aerogele sind feinstpor{\"o}se organische Stoffe, die {\"u}ber einen katalysierten Sol-Gel-Prozeß und anschließende Trocknung gewonnen werden. In ihrem chemischen Aufbau sind sie den Phenoplasten oder Phenolharzen sehr {\"a}hnlich. Durch Erhitzung auf {\"u}ber 900 K unter Schutzgas lassen sich die organischen Aerogele in elektrisch leitf{\"a}hige Kohlenstoff (C) Aerogele umwandeln. Durch die Menge der w{\"a}ßrigen Verd{\"u}nnung, sowie die Art und Konzentration des eingesetzten Katalysators, l{\"a}ßt sich die Poren- und Partikelgr{\"o}ße sowie die Porosit{\"a}t des im Sol-Gel-Prozeß entstehenden Gels beeinflussen. Aufgrund dieser M{\"o}glichkeit, die Eigenschaften der RF- und C-Aerogele „maßzuschneidern", bieten sich Einsatz- und Optimierungsm{\"o}glichkeiten bei zahlreichen technischen Anwendungen: z.B. bei Isolationsmaterialien, bei der Gasw{\"a}sche und in der Elektrochemie als Elektrodenmaterial f{\"u}r Batterien und Kondensatoren, sowie zur Elektrolyse. Bisherige systematische Untersuchungen unter Variation der Katalysator- und Monomerkonzentration beschr{\"a}nkten sich zumeist auf mit Na2CO3 basisch katalysierte RF- und C-Aerogele. Um metallische Verunreinigungen zu vermeiden, die sich beispielsweise beim Einsatz von C-Aerogelen als Substrat f{\"u}r Halbleiter st{\"o}rend auswirken, wurde in der vorliegenden Arbeit die Wirkung von carbonsauren Katalysatoren, insbesondere Essigs{\"a}ure und vereinzelt auch Ameisens{\"a}ure, auf die Strukturen und Eigenschaften der entstehenden Aerogele systematisch untersucht. Da im Hinblick auf sp{\"a}tere Anwendungen stets eine vereinfachte unterkritische Trocknung mit Austausch des Porenwassers durch Aceton durchgef{\"u}hrt wurde, wurde zum Vergleich auch eine entsprechend getrocknete Probenserie Na2CO3-katalysierter RF- und C-Aerogele hergestellt und untersucht. Strukturelle Untersuchungen mittels REM, R{\"o}ntgenkleinwinkelstreuung (SAXS) und Gassorptionsmessungen ergaben {\"a}hnlich wie bei basisch katalysierten Aerogelen eine Abnahme des Prim{\"a}rpartikeldurchmessers mit steigendem Katalysatorgehalt und best{\"a}tigten damit die Wirksamkeit der protoneninduzierten Katalyse, welche ab etwa pH = 5 einsetzen sollte. Allerdings zeigte sich, daß der essigsaure Katalysator weniger wirksam ist als Na2CO3, so daß zur Herstellung sehr fein strukturierter Aerogele mit geringen Dichten und Strukturen im nm-Bereich extrem hohe Katalysatorkonzentrationen bis in die Gr{\"o}ßenordnung der Stoffmenge des w{\"a}ssrigen L{\"o}sungsmittels n{\"o}tig sind. Wie auch bei basischer Katalyse mit geringer Katalysatorkonzentration, ergaben Variationen der Monomerkonzentration bei den essigsauer katalysierten Proben eine Poren- und Partikelverkleinerung mit zunehmendem Monomergehalt, jedoch mit gr{\"o}ßerer Verteilungsbreite als bei der basischen Katalyse. Bei der Na2CO3-Katalyse mit hohen Katalysatorkonzentrationen und bei unterkritischer Trocknung, kompensierte die mit sinkender Monomerkonzentration stark ansteigende trocknungsbedingte Schrumpfung die zu erwartende Porosit{\"a}tszunahme, so daß sich bei einheitlicher Katalysator- und verschiedenen Monomerkonzentrationen kaum strukturelle und Dichte{\"a}nderungen einstellten. Die schwach essigsauer katalysierten Proben zeigten im Vergleich zu den basischen eine stark ver{\"a}nderte Morphologie. W{\"a}hrend bei letzteren die Kontaktstellen zwischen den Prim{\"a}rpartikeln mit steigendem Partikeldurchmesser immer sp{\"a}rlicher ausfallen, gibt es bei carbonsauer katalysierten RF- und C-Aerogelen auch bei Prim{\"a}rpartikeln im µm-Bereich ein ausgepr{\"a}gtes Halswachstum. Weiterhin haben die µm-großen Prim{\"a}rpartikel basisch katalysierter RF-Aerogele ein clusterartiges Erscheinungsbild, w{\"a}hrend man bei essigsauer katalysierten kugelrunde Prim{\"a}rpartikel findet. Zur Untersuchung des Gelierprozesses wurden einige Proben mit ver{\"a}nderten Gelierzeiten und -temperaturen hergestellt. So konnte festgestellt werden, daß die Verweildauer bei Zimmertemperatur im Zusammenhang mit dem Prim{\"a}rpartikelwachstum steht, w{\"a}hrend bei h{\"o}heren Temperaturen die Vernetzung der Prim{\"a}rpartikeln untereinander gef{\"o}rdert wird. Zu kurze Gelierzeiten und ein Verzicht auf h{\"o}here Temperaturen f{\"u}hrt zu einer sehr starken Schrumpfung bei der unterkritischen Trocknung und damit zu nahezu unpor{\"o}sen harzartigen Materialien.}, subject = {Aerogel}, language = {de} }