@phdthesis{Scherz2024, author = {Scherz, Jan}, title = {Weak Solutions to Mathematical Models of the Interaction between Fluids, Solids and Electromagnetic Fields}, doi = {10.25972/OPUS-34920}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349205}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods. The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.}, subject = {Fluid-Struktur-Wechselwirkung}, language = {en} } @phdthesis{Lange2012, author = {Lange, Sebastian}, title = {Turbulenz und Teilchentransport in der Heliosph{\"a}re - Simulationen von inkompressiblen MHD-Plasmen und Testteilchen -}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-74012}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die Herkunft hochenergetischer solarer Teilchen konnte in den vergangenen Jahren eindeutig auf Schockbeschleunigung an koronalen Masseausw{\"u}rfen zur{\"u}ckgef{\"u}hrt werden. Durch resonante Interaktionen zwischen Wellen und Teilchen werden zum einen geladene Teilchen unter Ver{\"a}nderung ihrer Energie gestreut, zum anderen wird die Dynamik der Plasmawellen in solchen Beschleunigungsregionen durch diese Prozesse von selbstgenerierten Wellenmoden maßgeblich beeinflusst. Mittels numerischer Modellierungen wurden im Rahmen dieser Arbeit die grundlegenden physikalischen Regimes der Turbulenz und des Teilchentransports beschrieben. Die Simulation der Plasmadynamik bedient sich der Methodik der Magnetohydrodynamik, wohingegen kinetische Einzelteilchen durch die elementaren Bewegungsgleichungen der Elektrodynamik berechnet werden. Es konnten die Turbulenztheorien von Goldreich und Sridhar unter heliosph{\"a}rischen Bedingungen bei drei solaren Radien best{\"a}tigt werden. Vor allem zeigten sich Hinweise f{\"u}r das Erreichen der kritischen Balance, einem Schl{\"u}sselparameter dieser Theorien. Weiterhin werden Ergebnisse der dynamischen Entwicklung angeregter Wellenmoden pr{\"a}sentiert, in denen die Bedeutsamkeit f{\"u}r die gesamte Turbulenz gezeigt werden konnte. Als zentraler Prozess bei hohen Energien hat sich das wave-steepening herausgestellt, das als effizienter Energietransportmechanismus in paralleler Richtung zum Hintergrundmagnetfeld identifiziert wurde und somit turbulente Strukturen bei hohen parallelen Wellenzahlen erkl{\"a}rt, deren Entstehung das Goldreich-Sridhar Modell nicht beschreiben kann. Dar{\"u}ber hinaus wurden grundlegende Erkenntnisse {\"u}ber die quasilineare Theorie des Teilchentransports erzielt. Im Speziellen konnte ein tieferes Verst{\"a}ndnis f{\"u}r die Interpretation der Diffusionskoeffizienten von Welle-Teilchen Wechselwirkungen erlangt werden. Simulationen zur Streuung an angeregten Wellenmoden zeigten erstmals komplexe resonante Strukturen die im Rahmen analytischer Modelle nicht mehr ad{\"a}quat beschrieben werden k{\"o}nnen.}, subject = {Heliosph{\"a}re}, language = {de} } @phdthesis{Wisniewski2011, author = {Wisniewski, Martina}, title = {Numerische Untersuchung von Turbulenz und Teilchentransport in der Heliosphaere}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Hochenergetische solare Teilchen werden bei ihrem Transport durch die Heliosph{\"a}re an turbulenten Magnetfeldern gestreut. F{\"u}r das Verst{\"a}ndnis dieses Streuprozesses ergeben sich aus heutiger Sicht zwei wesentliche Hindernisse: - Bei der Streuung hochenergetischer Teilchen an turbulenten Magnetfeldern handelt es sich um einen nichtlinearen Prozess, der durch analytische Theorien kaum zu beschreiben ist. - Der Streuprozess h{\"a}ngt stark von den tats{\"a}chlichen Magnetfeldern und somit auch von der Magnetfeldturbulenz ab. Unser bisheriges Verst{\"a}ndnis der heliosph{\"a}rischen Turbulenz ist leider aufgrund sp{\"a}rlicher experimenteller Daten deutlich eingeschr{\"a}nkt, was eine qualifizierte Umsetzung in analytischen und numerischen Ans{\"a}tzen deutlich erschwert. Dies machte in der Vergangenheit k{\"u}nstliche Annahmen f{\"u}r die Modellerstellung notwendig. In dieser Arbeit wird der Teilchentransport mit Hilfe der Simulation von Testteilchen in einem turbulenten, magnetohydrodynamischen Plasma untersucht. Durch die Testteilchen werden auch die nichtlinearen Streuprozesse korrekt wiedergegeben, wodurch das erste hier genannte Hindernis {\"u}berwunden wird. Dies wurde auch bereits in fr{\"u}heren numerischen Untersuchungen erfolgreich angewendet. Die Modellierung der Turbulenz f{\"u}r den Fall des Teilchentransports erfolgt in dieser Arbeit erstmalig auf Grundlage der magnetohydrodynamischen Gleichungen. Dabei handelt es sich um die mathematisch korrekte Wiedergabe der Magnetfeldturbulenz unterhalb der Ionen-Gyrofrequenz mit nur geringen numerischen Einschr{\"a}nkungen. Dar{\"u}ber hinaus erlaubt ein auf das physikalische Szenario anpassbarer Turbulenztreiber eine noch realistischere Simulation der Turbulenz. Durch diesen universell g{\"u}ltigen, numerischen Ansatz k{\"o}nnen f{\"u}r das zweite hier angegebene Hindernis jegliche k{\"u}nstlichen Annahmen vermieden werden. Die drei im Rahmen dieser Arbeit erstmals zusammengef{\"u}hrten Methoden (Testteilchen, magnetohydrodynamische Turbulenz, Turbulenztreiber) erm{\"o}glichen somit eine Untersuchung und Analyse von Transport- und Turbulenzph{\"a}nomenen mit herausragender Qualit{\"a}t, die insbesondere f{\"u}r den Fall des Teilchentransports einen direkten Anschluss an experimentelle Ergebnisse erm{\"o}glichen. Wichtige Ergebnisse im Rahmen dieser Arbeit sind: - der Nachweis der Drei-Wellen-Wechselwirkung f{\"u}r schwache und einsetzende starke Turbulenz. - eine Analyse der Anisotropie der Turbulenz im Bezug auf das Hintergrundmagnetfeld in Abh{\"a}ngigkeit vom Treibmodell. Insbesondere die Anisotropie ist experimentell bislang kaum erfassbar. - eine Untersuchung der Auswirkung der Gyroresonanzen auf die Diffusionskoeffizienten hochenergetischer solarer Teilchen in allgemeiner Form. - die Simulation des Teilchentransports in der Heliosph{\"a}re auf Grundlage experimenteller Messdaten. Die genauere Analyse der Simulationsergebnisse erm{\"o}glicht insgesamt einen Zugang zum Verst{\"a}ndnis des Transports, der durch experimentelle Untersuchungen nicht erfassbar ist. Bei der Simulation wurden lediglich die Magnetfeldst{\"a}rke sowie die untersuchte Teilchenenergie vorgegeben. Aus der Analyse der Simulationsergebnisse ergibt sich dieselbe mittlere freie Wegl{\"a}nge, wie sie auch durch andere Verfahren direkt aus den Messergebnissen gewonnen werden konnte. Auch die vorwiegende Ausrichtung der hochenergetischen Teilchen parallel und antiparallel zum Hintergrundmagnetfeld in der Simulation entspricht experimentellen Untersuchungen. Es zeigt sich, dass diese allein aus den resonanten Streuprozessen der Teilchen mit den Magnetfeldern resultiert. Des Weiteren werden die Art der Diffusion, der Energieverlust der Teilchen w{\"a}hrend des Transportprozesses sowie die G{\"u}ltigkeit der quasilinearen Theorie untersucht.}, subject = {Sonnenwind}, language = {de} }