@phdthesis{Mims2023, author = {Mims, David}, title = {Einblicke in die Spinchemie durch Untersuchung des Magnetfeldeffektes in rigide gebundenen Radikalionenpaaren}, doi = {10.25972/OPUS-30354}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303547}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Synthese starrer Donor-Akzeptor-Verbindungen und Untersuchung des Magnetfeldeffektes auf Lebenszeit resultierender Biradikale mittels optischer Spektroskopie.}, subject = {Magnetfeldeffekt}, language = {de} } @phdthesis{Klein2015, author = {Klein, Johannes Hubert}, title = {Electron Transfer and Spin Chemistry in Iridium-Dipyrrin Dyads and Triads}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The successful synthesis of a family of donor-iridium complex-acceptor triads (T1-T6, pMV1 and mMV1) and their electrochemical and photophysical properties were presented in this work. Triarylamines (TAA) were used as donors and naphthalene diimide (NDI) as acceptor. A bis-cyclometalated phenylpyrazole iridium dipyrrin complex acts as a photosensitiser. In addition, a molecular structure of T1 was obtained by single crystal X-ray diffraction. Transient absorption spectroscopy experiments of these triads resembled that upon excitation a photoinduced electron transfer efficiently generates long-lived, charge-separated (CS) states. Thereby, the electron-transfer mechanism depends on the excitation energy. The presence of singlet and triplet CS states was clarified by magnetic-field dependent transient-absorption spectroscopy in the nanosecond time regime. It was demonstrated that the magnetic field effect of charge-recombination kinetics showed for the first time a transition from the coherent to the incoherent spin-flip regime. The lifetime of the CS states could be drastically prolonged by varying the spacer between the iridium complex and the NDI unit by using a biphenyl instead of a phenylene unit in T4. A mixed-valence (MV) state of two TAA donors linked to an iridium metal centre were generated upon photoexcitation of triad pMV1 and mMV1. The mixed-valence character in these triads was proven by the analysis of an intervalence charge-transfer (IV-CT) band in the (near-infrared) NIR spectral region by femtosecond pump-probe experiments. These findings were supported by TD-DFT calculations. The synthesis of dyads (D1-D4) was performed. Thereby the dipyrrin ligand was substituted with electron withdrawing groups. The electrochemical and photophysical characterisation revealed that in one case (D4) it was possible to generate a CS state upon photoexcitation.}, subject = {Elektronentransfer}, language = {en} }