@phdthesis{Stingl2011, author = {Stingl, Nadja}, title = {Regulation der Jasmonatbiosynthese durch Lipasen in Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56393}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Lipasen regulieren die Biosynthese von Jasmonaten, die eine elementare Signalfunktion bei der Entwicklung von Pflanzen und der Abwehr von Pathogenen haben. Entsprechend dem klassischen „Vick-Zimmerman-Pathway" dienen die aus Galaktolipiden freigesetzten Fetts{\"a}uren α-18:3 und 16:3 als Substrate der Jasmons{\"a}ure (JA)-Synthese. In den letzen zehn Jahren wurden jedoch die Intermediate der JA-Biosynthese 12-Oxo-Phytodiens{\"a}ure (OPDA, ausgehend von α-18:3) und Dinor-12-Oxo-Phytodiens{\"a}ure (dnOPDA, ausgehend von 16:3) verestert in Galaktolipiden der Art Arabidopsis thaliana nachgewiesen. Die Biosynthese und die m{\"o}giche Speicherfunktion dieser komplexen, als Arabidopside bezeichneten, Lipide war jedoch noch unklar. In der Literatur wird ein alternativer Syntheseweg postuliert, in dem analog zum klassischen „Vick-Zimmerman-Pathway" die Biosynthese von veresterter OPDA/dnOPDA ausgehend von veresterter α-18:3/16:3 vollst{\"a}ndig in Galaktolipiden der Pastidenmembran stattfindet. Nach Freisetzung von OPDA/dnOPDA durch eine Lipase k{\"o}nnten OPDA/dnOPDA dann als Intermediate in die JA-Biosynthese einfliessen. Sowohl im klassischen „Vick-Zimmerman-Pathway" als auch im postulierten alternativen Syntheseweg ist die Aktivit{\"a}t von Lipasen von essentieller Bedeutung f{\"u}r die JA-Biosynthese. F{\"u}r zwei plastid{\"a}re sn1-spezifische Acyl-Hydrolasen, DEFECTIVE IN ANTHER DEHISCENCE1 (DAD1) und DONGLE (DGL), wurde eine zentrale Funktion innerhalb der Jasmonat-Biosynthese in Bl{\"a}ttern von A. thaliana beschrieben. Dem zufolge ist DGL f{\"u}r die basalen und die fr{\"u}hen wundinduzierten JA-Gehalte und DAD1 f{\"u}r die Aufrechterhaltung der erh{\"o}hten JA-Konzentrationen in der sp{\"a}teren Verwundungsantwort verantwortlich. In der vorliegenden Arbeit wiesen drei unabh{\"a}ngige DGL-RNAi-Linien sowie DAD1-Knock-out-Mutanten sowohl unter basalen Bedingungen als auch zu fr{\"u}hen Zeitpunkten nach Verwundung sowie nach Infektion mit dem Bakterienstamm P. syringae DC3000 (avrRPM1) mit dem Wildtyp vergleichbare Konzentrationen an OPDA/JA auf. Dies steht im klaren Widerspruch zu den publizierten Daten. Die Beteiligung von DAD1 an der OPDA/JA-Biosynthese zu sp{\"a}ten Zeitpunkten nach Verwundung konnte jedoch best{\"a}tigt werden. Ferner konnte eine dramatische {\"U}ber-Akkumulation von Arabidopsiden in DAD1-defizienten Mutanten nach Verwundung nachgewiesen werden, was auf eine Beteiligung von DAD1 bei der Freisetzung von membrangebundener OPDA/dnOPDA hinweist. Die Analyse der Einzelmutanten 16 weiterer plastid{\"a}rer Lipasen unter basalen Bedingungen, nach Verwundung und nach Infektion mit P. syringae DC3000 (avrRPM1) zeigte, dass keine der analysierten Mutanten eine essentielle Rolle in der JA-Biosynthese spielt. Jedoch wiesen Mutanten der sn1-spezifischen Lipasen AtPLA1-Iγ1 (At1g06800) signifikant niedrigere Konzentrationen an dnOPDA, OPDA und JA nach Verwundung auf, was eine indirekte Beteiligung an der JA-Biosynthese vermuten l{\"a}sst. Blattgewebe einer Quadrupel-Mutanten, welche defizient in vier DAD1-{\"a}hnlichen Lipasen (AtPLA1-Iβ2, AtPLA1-Iγ1, AtPLA1-Iγ2, AtPLA1-Iγ3) ist, wies nach Verwundung mit der AtPLA1-Iγ1-Mutante vergleichbar niedrige Gehalte an dnOPDA, OPDA sowie JA auf. Da stets in sn2-Position vorliegende 16:3/dnOPDA ebenfalls Substrat der JA-Biosynthese sein kann, m{\"u}ssen zus{\"a}tzlich zu DAD1 und AtPLA1-Iγ1 noch weitere nicht identifizierte sn1- und sn2-spezifische Acyl-Hydrolasen an der JA-Biosynthese nach Verwundung und Pathogeninfektion beteiligt sein. Dies bedeutet, dass entgegen der in der Literatur vertretenen Meinung, nicht eine sondern mehrere Lipasen in redundanter Weise die Biosynthese von Jasmonaten regulieren. Zur Aufkl{\"a}rung der Biosynthese und m{\"o}glichen Speicherfunktion der ausschließlich in Arabidopsis vorkommenden Arabidopside wurden A. thaliana Keimlinge mit D5-Linolens{\"a}ure-Ethylester inkubiert, um eine D5-Markierung der komplexen Lipide zu erzielen. Durch einen anschließenden Stressstimulus mittels Zugabe von Silbernitrat wurde die Jasmonat-Synthese induziert. Die vergleichende Analyse der Markierungsgrade der komplexen Membranlipide MGDG, DGDG, PC sowie der freien OPDA und JA vor und nach Zugabe des Silbernitrats zeigte, eine hohe {\"U}bereinstimmung der Markierungsgrade der komplexen Membranlipide 18:3-18:3-MGDG, 18:3-OPDA-MGDG, Arabidopsid B (MGDG-OPDA-OPDA) und Arabidopsid G (OPDA-MGDG-OPDA-OPDA) vor der Silbernitratbehandlung mit denjenigen der durch Silbernitratbehandlung neu gebildeten OPDA/JA. Dagegen wird die hochmarkierte freie Linolens{\"a}ure nicht direkt zu freier OPDA umgesetzt. Die erhaltenen Ergebnisse zeigen, dass 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G direkte Vorstufen von freier OPDA sein k{\"o}nnen. Damit {\"u}bereinstimmend konnte gezeigt werden, dass nach Silbernitratstress die Spiege der Vorstufe 18:3-18:3-MGDG abnehmen und zeitgleich die entsprechenden unmittelbaren Metabolite 18:3-OPDA-MGDG, Arabidopsid B und Arabidopsid G akkumulieren.}, subject = {Lipasen}, language = {de} } @phdthesis{Bertram2005, author = {Bertram, Helge}, title = {Bioinformatische Identifikation von Dom{\"a}nenunterschieden bei Parasit und Wirt am Beispiel der Malaria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17188}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Diese Arbeit untersucht zellul{\"a}re Netzwerke mit dem Ziel, die so gewonnenen Einsichten medizinisch beziehungsweise biotechnologisch zu nutzen. Hierzu m{\"u}ssen zun{\"a}chst Proteindom{\"a}nen und wichtige regulatorische RNA Elemente erkannt werden. Dies geschieht f{\"u}r regulatorische Elemente in Nukleins{\"a}uren am Beispiel von Iron Responsive Elements (IREs) in Staphylococcus aureus, wobei sich solche Elemente in viel versprechender N{\"a}he zu exprimierten Sequenzen finden lassen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Noch bedeutsamer als Ziele zur Medikamentenentwicklung gegen Parasiten sind Dom{\"a}nenunterschiede in Struktur und Sequenz bei Proteinen (T. Dandekar, F. Du, H. Bertram (2001) Nonlinear Analysis 47(1): 225-34). Ihre Identifikation wird am Beispiel eines potentiellen Transportproteins in Plasmodium falciparum exemplarisch dargestellt. Anschließend wird das Zusammenwirken von regulatorischen Elementen und Dom{\"a}nen in Netzwerken betrachtet (einschließlich experimenteller Daten). Dies kann einerseits zu allgemeineren Schlussfolgerungen {\"u}ber das Netzwerkverhalten f{\"u}hren, andererseits f{\"u}r konkrete Anwendungen genutzt werden. Als Beispiel w{\"a}hlten wir hier Redoxnetzwerke und die Bek{\"a}mpfung von Plasmodien als Verursacher der Malaria. Da das gesamte Redoxnetzwerk einer lebenden Zelle mit Methoden der pH Wert Messung nur unzureichend zu erfassen ist, werden als alternative Messmethode f{\"u}r dieses Netzwerk Mikrokristalle der Glutathionreduktase als Indikatorsystem nach digitaler Verst{\"a}rkung experimentell genutzt (H. Bertram, M. A. Keese, C. Boulin, R. H. Schirmer, R. Pepperkok, T. Dandekar (2002) Chemical Nanotechnology Talks III - Nano for Life Sciences). Um komplexe Redoxnetzwerke auch bioinformatisch zu modulieren, werden Verfahren der metabolischen Fluxanalyse vorgestellt und verbessert, um insbesondere ihrer Verzahnung besser gerecht zu werden und solche Netzwerke mit m{\"o}glichst wenig elementaren Flussmoden zutreffend beschreiben zu k{\"o}nnen. Die Reduktion der Anzahl von Elementarmoden bei sehr großen metabolischen Netzwerken einer Zelle gelingt hier mit Hilfe unterschiedlicher Methoden und f{\"u}hrt zu einer vereinfachten Darstellungsm{\"o}glichkeit komplexer Stoffwechselwege von Metaboliten. Dabei dient bei jeder dieser Methoden die biochemisch sinnvolle Definition von externen Metaboliten als Grundlage (T. Dandekar, F. Moldenhauer, S. Bulik, H. Bertram, S. Schuster (2003) Biosystems 70(3): 255-70). Allgemeiner werden Verfahren der Proteindom{\"a}nenklassifikation sowie neue Strategien gegen mikrobielle Erreger betrachtet. In Bezug auf automatisierte Einteilung von Proteinen in Dom{\"a}nen wird ein neues System von Taylor (2002b) mit bekannten Systemen verglichen, die in unterschiedlichem Umfang menschlichen Eingriffs bed{\"u}rfen (H. Bertram, T. Dandekar (2002) Chemtracts 15: 735-9). Außerdem wurde neben einer Arbeit {\"u}ber die verschiedenen Methoden aus den Daten eines Genoms Informationen {\"u}ber das metabolische Netzwerk der Zelle zu erlangen (H. Bertram, T. Dandekar (2004) it 46(1): 5-11) auch eine {\"U}bersicht {\"u}ber die Schwerpunkte der Bioinformatik in W{\"u}rzburg zusammengestellt (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum 1-2: 26-7). Schließlich wird beschrieben, wie die Pathogenomik und Virulenz von Bakterien der bioinformatischen Analyse zug{\"a}nglich gemacht werden k{\"o}nnen (H. Bertram, S. Balthasar, T. Dandekar (2003) Bioforum Eur. 3: 157-9). Im letzten Teil wird die metabolische Fluxanalyse zur Identifikation neuer Strategien zur Bek{\"a}mpfung von Plasmodien dargestellt: Beim Vergleich der Stoffwechselwege mit Glutathion und Thioredoxin in Plasmodium falciparum, Anopheles und Mensch geht es darum, gezielte St{\"o}rungen im Stoffwechsel des Malariaerregers auszul{\"o}sen und dabei den Wirt zu schonen. Es ergeben sich einige interessante Ansatzpunkte, deren medizinische Nutzung experimentell angestrebt werden kann.}, subject = {Plasmodium falciparum}, language = {de} }