@article{DrgonovaWaltherHartsteinetal.2016, author = {Drgonova, Jana and Walther, Donna and Hartstein, G Luke and Bukhari, Mohammad O and Baumann, Michael H and Katz, Jonathan and Hall, F Scott and Arnold, Elizabeth R and Flax, Shaun and Riley, Anthony and Rivero, Olga and Lesch, Klaus-Peter and Troncoso, Juan and Ranscht, Barbara and Uhl, George R}, title = {Cadherin 13: Human cis-Regulation and Selectively Altered Addiction Phenotypes and Cerebral Cortical Dopamine in Knockout Mice}, series = {Molecular Medicine}, volume = {22}, journal = {Molecular Medicine}, doi = {10.2119/molmed.2015.00170}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165842}, pages = {537-547}, year = {2016}, abstract = {The Cadherin 13 (CDH13) gene encodes a cell adhesion molecule likely to influence development and connections of brain circuits that modulate addiction, locomotion and cognition, including those that involve midbrain dopamine neurons. Human CDH13 mRNA expression differs by more than 80\% in postmortem cerebral cortical samples from individuals with different CDH13 genotypes, supporting examination of mice with altered CDH13 expression as models for common human variation at this locus. Constitutive CDH13 knockout mice display evidence for changed cocaine reward: shifted dose response relationship in tests of cocaine-conditioned place preference using doses that do not alter cocaine-conditioned taste aversion. Reduced adult CDH13 expression in conditional knockouts also alters cocaine reward in ways that correlate with individual differences in cortical CDH13 mRNA levels. In control and comparison behavioral assessments, knockout mice display modestly quicker acquisition of rotarod and water maze tasks, with a trend toward faster acquisition of 5-choice serial reaction time tasks that otherwise displayed no genotype-related differences. They display significant differences in locomotion in some settings, with larger effects in males. In assessments of brain changes that might contribute to these behavioral differences, there are selective alterations of dopamine levels, dopamine/metabolite ratios, dopaminergic fiber densities and mRNA encoding the activity dependent transcription factor npas4 in cerebral cortex of knockout mice. These novel data and previously reported human associations of CDH13 variants with addiction, individual differences in responses to stimulant administration and attention deficit hyperactivity disorder (ADHD) phenotypes suggest that levels of CDH13 expression, through mechanisms likely to include effects on mesocortical dopamine, influence stimulant reward and may contribute modestly to cognitive and locomotor phenotypes relevant to ADHD.}, language = {en} } @article{KuhnScharfenortSchuemannetal.2016, author = {Kuhn, Manuel and Scharfenort, Robert and Sch{\"u}mann, Dirk and Schiele, Miriam A. and M{\"u}nsterk{\"o}tter, Anna L. and Deckert, J{\"u}rgen and Domschke, Katharina and Haaker, Jan and Kalisch, Raffael and Pauli, Paul and Reif, Andreas and Romanos, Marcel and Zwanzger, Peter and Lonsdorf, Tina B.}, title = {Mismatch or allostatic load? Timing of life adversity differentially shapes gray matter volume and anxious temperament}, series = {Social Cognitive and Affective Neuroscience}, volume = {11}, journal = {Social Cognitive and Affective Neuroscience}, number = {4}, doi = {10.1093/scan/nsv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189645}, pages = {537-547}, year = {2016}, abstract = {Traditionally, adversity was defined as the accumulation of environmental events (allostatic load). Recently however, a mismatch between the early and the later (adult) environment (mismatch) has been hypothesized to be critical for disease development, a hypothesis that has not yet been tested explicitly in humans. We explored the impact of timing of life adversity (childhood and past year) on anxiety and depression levels (N = 833) and brain morphology (N = 129). Both remote (childhood) and proximal (recent) adversities were differentially mirrored in morphometric changes in areas critically involved in emotional processing (i.e. amygdala/hippocampus, dorsal anterior cingulate cortex, respectively). The effect of adversity on affect acted in an additive way with no evidence for interactions (mismatch). Structural equation modeling demonstrated a direct effect of adversity on morphometric estimates and anxiety/depression without evidence of brain morphology functioning as a mediator. Our results highlight that adversity manifests as pronounced changes in brain morphometric and affective temperament even though these seem to represent distinct mechanistic pathways. A major goal of future studies should be to define critical time periods for the impact of adversity and strategies for intervening to prevent or reverse the effects of adverse childhood life experiences.}, language = {en} } @article{PrelogHilligardtSchmidtetal.2016, author = {Prelog, Martina and Hilligardt, Deborah and Schmidt, Christian A. and Przybylski, Grzegorz K. and Leierer, Johannes and Almanzar, Giovanni and El Hajj, Nady and Lesch, Klaus-Peter and Arolt, Volker and Zwanzger, Peter and Haaf, Thomas and Domschke, Katharina}, title = {Hypermethylation of FOXP3 Promoter and Premature Aging of the Immune System in Female Patients with Panic Disorder?}, series = {PLoS ONE}, volume = {11}, journal = {PLoS ONE}, number = {6}, doi = {10.1371/journal.pone.0157930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179684}, year = {2016}, abstract = {Immunological abnormalities associated with pathological conditions, such as higher infection rates, inflammatory diseases, cancer or cardiovascular events are common in patients with panic disorder. In the present study, T cell receptor excision circles (TRECs), Forkhead-Box-Protein P3 gene (FOXP3) methylation of regulatory T cells (Tregs) and relative telomere lengths (RTLs) were investigated in a total and subsamples of 131 patients with panic disorder as compared to 131 age- and sex-matched healthy controls in order to test for a potential dysfunction and premature aging of the immune system in anxiety disorders. Significantly lower TRECs (p = 0.004) as well as significant hypermethylation of the FOXP3 promoter region (p = 0.005) were observed in female (but not in male) patients with panic disorder as compared to healthy controls. No difference in relative telomere length was discerned between patients and controls, but significantly shorter telomeres in females, smokers and older persons within the patient group. The presently observed reduced TRECs in panic disorder patients and FOXP3 hypermethylation in female patients with panic disorder potentially reflect impaired thymus and immunosuppressive Treg function, which might partly account for the known increased morbidity and mortality of anxiety disorders conferred by e.g. cancer and cardiovascular disorders.}, language = {en} } @article{SchieleReinhardReifetal.2016, author = {Schiele, Miriam A. and Reinhard, Julia and Reif, Andreas and Domschke, Katharina and Romanos, Marcel and Deckert, J{\"u}rgen and Pauli, Paul}, title = {Developmental aspects of fear: Comparing the acquisition and generalization of conditioned fear in children and adults}, series = {Developmental Psychobiology}, volume = {58}, journal = {Developmental Psychobiology}, number = {4}, doi = {10.1002/dev.21393}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189488}, pages = {471-481}, year = {2016}, abstract = {Most research on human fear conditioning and its generalization has focused on adults whereas only little is known about these processes in children. Direct comparisons between child and adult populations are needed to determine developmental risk markers of fear and anxiety. We compared 267 children and 285 adults in a differential fear conditioning paradigm and generalization test. Skin conductance responses (SCR) and ratings of valence and arousal were obtained to indicate fear learning. Both groups displayed robust and similar differential conditioning on subjective and physiological levels. However, children showed heightened fear generalization compared to adults as indexed by higher arousal ratings and SCR to the generalization stimuli. Results indicate overgeneralization of conditioned fear as a developmental correlate of fear learning. The developmental change from a shallow to a steeper generalization gradient is likely related to the maturation of brain structures that modulate efficient discrimination between danger and (ambiguous) safety cues.}, language = {en} } @article{CouchTrofimovMarkovaetal.2016, author = {Couch, Yvonne and Trofimov, Alexander and Markova, Natalyia and Nikolenko, Vladimir and Steinbusch, Harry W. and Chekhonin, Vladimir and Schroeter, Careen and Lesch, Klaus-Peter and Anthony, Daniel C. and Strekalova, Tatyana}, title = {Low-dose lipopolysaccharide (LPS) inhibits aggressive and augments depressive behaviours in a chronic mild stress model in mice}, series = {Journal of Neuroinflammation}, volume = {13}, journal = {Journal of Neuroinflammation}, number = {108}, doi = {10.1186/s12974-016-0572-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165676}, pages = {1-17}, year = {2016}, abstract = {Background Aggression, hyperactivity, impulsivity, helplessness and anhedonia are all signs of depressive-like disorders in humans and are often reported to be present in animal models of depression induced by stress or by inflammatory challenges. However, chronic mild stress (CMS) and clinically silent inflammation, during the recovery period after an infection, for example, are often coincident, but comparison of the behavioural and molecular changes that underpin CMS vs a mild inflammatory challenge and impact of the combined challenge is largely unexplored. Here, we examined whether stress-induced behavioural and molecular responses are analogous to lipopolysaccharide (LPS)-induced behavioural and molecular effects and whether their combination is adaptive or maladaptive. Methods Changes in measures of hedonic sensitivity, helplessness, aggression, impulsivity and CNS and systemic cytokine and 5-HT-system-related gene expression were investigated in C57BL/6J male mice exposed to chronic stress alone, low-dose LPS alone or a combination of LPS and stress. Results When combined with a low dose of LPS, chronic stress resulted in an enhanced depressive-like phenotype but significantly reduced manifestations of aggression and hyperactivity. At the molecular level, LPS was a strong inducer of TNFα, IL-1β and region-specific 5-HT2A mRNA expression in the brain. There was also increased serum corticosterone as well as increased TNFα expression in the liver. Stress did not induce comparable levels of cytokine expression to an LPS challenge, but the combination of stress with LPS reduced the stress-induced changes in 5-HT genes and the LPS-induced elevated IL-1β levels. Conclusions It is evident that when administered independently, both stress and LPS challenges induced distinct molecular and behavioural changes. However, at a time when LPS alone does not induce any overt behavioural changes per se, the combination with stress exacerbates depressive and inhibits aggressive behaviours.}, language = {en} } @article{DomschkeZwanzgerRehbeinetal.2016, author = {Domschke, Katharina and Zwanzger, Peter and Rehbein, Maimu A. and Steinberg, Christian and Knoke, Kathrin and Dobel, Christian and Klinkenberg, Isabelle and Kugel, Harald and Kersting, Anette and Arolt, Volker and Pantev, Christo and Junghofer, Markus}, title = {Magnetoencephalographic Correlates of Emotional Processing in Major Depression Before and After Pharmacological Treatment}, series = {International Journal of Neuropsychopharmacology}, volume = {2016}, journal = {International Journal of Neuropsychopharmacology}, doi = {10.1093/ijnp/pyv093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165523}, pages = {1-9}, year = {2016}, abstract = {Background: In major depressive disorder (MDD), electrophysiological and imaging studies suggest reduced neural activity in the parietal and dorsolateral prefrontal cortex regions. In the present study, neural correlates of emotional processing in MDD were analyzed for the first time in a pre-/post-treatment design by means of magnetoencephalography (MEG), allowing for detecting temporal dynamics of brain activation. Methods: Twenty-five medication-free Caucasian in-patients with MDD and 25 matched controls underwent a baseline MEG session with passive viewing of pleasant, unpleasant, and neutral pictures. Fifteen patients were followed-up with a second MEG session after 4 weeks of antidepressant monopharmacotherapy with mirtazapine. The corresponding controls received no intervention between the measurements. The clinical course of depression was assessed using the Hamilton Depression scale. Results: Prior to treatment, an overall neocortical hypoactivation during emotional processing, particularly at the parietal regions and areas at the right temporoparietal junction, as well as abnormal valence-specific reactions at the right parietal and bilateral dorsolateral prefrontal cortex (dlPFC) regions were observed in patients compared to controls. These effects occurred <150ms, suggesting dysfunctional processing of emotional stimuli at a preconscious level. Successful antidepressant treatment resulted in a normalization of the hypoactivation at the right parietal and right temporoparietal regions. Accordingly, both dlPFC regions revealed an increase of activity after therapy. Conclusions: The present study provides neurophysiological evidence for dysfunctional emotional processing in a fronto-parieto-temporal network, possibly contributing to the pathogenesis of MDD. These activation patterns might have the potential to serve as biomarkers of treatment success.}, language = {en} } @article{EngeFleischhauerGaertneretal.2016, author = {Enge, S{\"o}ren and Fleischhauer, Monika and G{\"a}rtner, Anne and Reif, Andreas and Lesch, Klaus-Peter and Kliegel, Matthias and Strobel, Alexander}, title = {Brain-Derived Neurotrophic Factor (Val66Met) and Serotonin Transporter (5-HTTLPR) Polymorphisms Modulate Plasticity in Inhibitory Control Performance Over Time but Independent of Inhibitory Control Training}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {370}, doi = {10.3389/fnhum.2016.00370}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165176}, year = {2016}, abstract = {Several studies reported training-induced improvements in executive function tasks and also observed transfer to untrained tasks. However, the results are mixed and there is a large interindividual variability within and across studies. Given that training-related performance changes would require modification, growth or differentiation at the cellular and synaptic level in the brain, research on critical moderators of brain plasticity potentially explaining such changes is needed. In the present study, a pre-post-follow-up design (N = 122) and a 3-weeks training of two response inhibition tasks (Go/NoGo and Stop-Signal) was employed and genetic variation (Val66Met) in the brain-derived neurotrophic factor (BDNF) promoting differentiation and activity-dependent synaptic plasticity was examined. Because Serotonin (5-HT) signaling and the interplay of BDNF and 5-HT are known to critically mediate brain plasticity, genetic variation in the 5-HTT gene-linked polymorphic region (5-HTTLPR) was also addressed. The overall results show that the kind of training (i.e., adaptive vs. non-adaptive) did not evoke genotype-dependent differences. However, in the Go/NoGo task, better inhibition performance (lower commission errors) were observed for BDNF Val/Val genotype carriers compared to Met-allele ones supporting similar findings from other cognitive tasks. Additionally, a gene-gene interaction suggests a more impulsive response pattern (faster responses accompanied by higher commission error rates) in homozygous l-allele carriers relative to those with the s-allele of 5-HTTLPR. This, however, is true only in the presence of the Met-allele of BDNF, while the Val/Val genotype seems to compensate for such non-adaptive responding. Intriguingly, similar results were obtained for the Stop-Signal task. Here, differences emerged at post-testing, while no differences were observed at T1. In sum, although no genotype-dependent differences between the relevant training groups emerged suggesting no changes in the trained inhibition function, the observed genotype-dependent performance changes from pre- to post measurement may reflect rapid learning or memory effects linked to BDNF and 5-HTTLPR. In line with ample evidence on BDNF and BDNF-5-HT system interactions to induce (rapid) plasticity especially in hippocampal regions and in response to environmental demands, the findings may reflect genotype-dependent differences in the acquisition and consolidation of task-relevant information, thereby facilitating a more adaptive responding to task-specific requirements.}, language = {en} } @article{MeyerRichterSchreiberetal.2016, author = {Meyer, Neele and Richter, S. Helene and Schreiber, Rebecca S. and Kloke, Vanessa and Kaiser, Sylvia and Lesch, Klaus-Peter and Sachser, Norbert}, title = {The Unexpected Effects of Beneficial and Adverse Social Experiences during Adolescence on Anxiety and Aggression and Their Modulation by Genotype}, series = {Frontiers in Behavioral Neuroscience}, volume = {10}, journal = {Frontiers in Behavioral Neuroscience}, number = {97}, doi = {10.3389/fnbeh.2016.00097}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165090}, year = {2016}, abstract = {Anxiety and aggression are part of the behavioral repertoire of humans and animals. However, in their exaggerated form both can become maladaptive and result in psychiatric disorders. On the one hand, genetic predisposition has been shown to play a crucial modulatory role in anxiety and aggression. On the other hand, social experiences have been implicated in the modulation of these traits. However, so far, mainly experiences in early life phases have been considered crucial for shaping anxiety-like and aggressive behavior, while the phase of adolescence has largely been neglected. Therefore, the aim of the present study was to elucidate how levels of anxiety-like and aggressive behavior are shaped by social experiences during adolescence and serotonin transporter (5-HTT) genotype. For this purpose, male mice of a 5-HTT knockout mouse model including all three genotypes (wildtype, heterozygous and homozygous 5-HTT knockout mice) were either exposed to an adverse social situation or a beneficial social environment during adolescence. This was accomplished in a custom-made cage system where mice experiencing the adverse environment were repeatedly introduced to the territory of a dominant opponent but had the possibility to escape to a refuge cage. Mice encountering beneficial social conditions had free access to a female mating partner. Afterwards, anxiety-like and aggressive behavior was assessed in a battery of tests. Surprisingly, unfavorable conditions during adolescence led to a decrease in anxiety-like behavior and an increase in exploratory locomotion. Additionally, aggressive behavior was augmented in animals that experienced social adversity. Concerning genotype, homozygous 5-HTT knockout mice were more anxious and less aggressive than heterozygous 5-HTT knockout and wildtype mice. In summary, adolescence is clearly an important phase in which anxiety-like and aggressive behavior can be shaped. Furthermore, it seems that having to cope with challenge during adolescence instead of experiencing throughout beneficial social conditions leads to reduced levels of anxiety-like behavior.}, language = {en} } @article{PlumSteinbachAttemsetal.2016, author = {Plum, Sarah and Steinbach, Simone and Attems, Johannes and Keers, Sharon and Riederer, Peter and Gerlach, Manfred and May, Caroline and Marcus, Katrin}, title = {Proteomic characterization of neuromelanin granules isolated from human substantia nigra by laser-microdissection}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {37139}, doi = {10.1038/srep37139}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167507}, year = {2016}, abstract = {Neuromelanin is a complex polymer pigment found primarily in the dopaminergic neurons of human substantia nigra. Neuromelanin pigment is stored in granules including a protein matrix and lipid droplets. Neuromelanin granules are yet only partially characterised regarding their structure and function. To clarify the exact function of neuromelanin granules in humans, their enrichment and in-depth characterization from human substantia nigra is necessary. Previously published global proteome studies of neuromelanin granules in human substantia nigra required high tissue amounts. Due to the limited availability of human brain tissue we established a new method based on laser microdissection combined with mass spectrometry for the isolation and analysis of neuromelanin granules. With this method it is possible for the first time to isolate a sufficient amount of neuromelanin granules for global proteomics analysis from ten 10 μm tissue sections. In total 1,000 proteins were identified associated with neuromelanin granules. More than 68\% of those proteins were also identified in previously performed studies. Our results confirm and further extend previously described findings, supporting the connection of neuromelanin granules to iron homeostasis and lysosomes or endosomes. Hence, this method is suitable for the donor specific enrichment and proteomic analysis of neuromelanin granules.}, language = {en} } @article{ZieglerRichterMahretal.2016, author = {Ziegler, C. and Richter, J. and Mahr, M. and Gajewska, A. and Schiele, M.A. and Gehrmann, A. and Schmidt, B. and Lesch, K.-P. and Lang, T. and Helbig-Lang, S. and Pauli, P. and Kircher, T. and Reif, A. and Rief, W. and Vossbeck-Elsebusch, A.N. and Arolt, V. and Wittchen, H.-U. and Hamm, A.O. and Deckert, J. and Domschke, K.}, title = {MAOA gene hypomethylation in panic disorder-reversibility of an epigenetic risk pattern by psychotherapy}, series = {Translational Psychiatry}, journal = {Translational Psychiatry}, number = {6}, doi = {10.1038/tp.2016.41}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164422}, pages = {e773}, year = {2016}, abstract = {Epigenetic signatures such as methylation of the monoamine oxidase A (MAOA) gene have been found to be altered in panic disorder (PD). Hypothesizing temporal plasticity of epigenetic processes as a mechanism of successful fear extinction, the present psychotherapy-epigenetic study for we believe the first time investigated MAOA methylation changes during the course of exposure-based cognitive behavioral therapy (CBT) in PD. MAOA methylation was compared between N=28 female Caucasian PD patients (discovery sample) and N=28 age- and sex-matched healthy controls via direct sequencing of sodium bisulfite-treated DNA extracted from blood cells. MAOA methylation was furthermore analyzed at baseline (T0) and after a 6-week CBT (T1) in the discovery sample parallelized by a waiting time in healthy controls, as well as in an independent sample of female PD patients (N=20). Patients exhibited lower MAOA methylation than healthy controls (P<0.001), and baseline PD severity correlated negatively with MAOA methylation (P=0.01). In the discovery sample, MAOA methylation increased up to the level of healthy controls along with CBT response (number of panic attacks; T0-T1: +3.37±2.17\%), while non-responders further decreased in methylation (-2.00±1.28\%; P=0.001). In the replication sample, increases in MAOA methylation correlated with agoraphobic symptom reduction after CBT (P=0.02-0.03). The present results support previous evidence for MAOA hypomethylation as a PD risk marker and suggest reversibility of MAOA hypomethylation as a potential epigenetic correlate of response to CBT. The emerging notion of epigenetic signatures as a mechanism of action of psychotherapeutic interventions may promote epigenetic patterns as biomarkers of lasting extinction effects.}, language = {en} } @article{IslesIngasonLowtheretal.2016, author = {Isles, Anthony R. and Ingason, Andr{\´e}s and Lowther, Chelsea and Walters, James and Gawlick, Micha and St{\"o}ber, Gerald and Rees, Elliott and Martin, Joanna and Little, Rosie B. and Potter, Harry and Georgieva, Lyudmila and Pizzo, Lucilla and Ozaki, Norio and Aleksic, Branko and Kushima, Itaru and Ikeda, Masashi and Iwata, Nakao and Levinson, Douglas F. and Gejman, Pablo V. and Shi, Jianxin and Sanders, Alan R. and Duan, Jubao and Willis, Joseph and Sisodiya, Sanjay and Costain, Gregory and Werge, Thomas M. and Degenhardt, Franziska and Giegling, Ina and Rujescu, Dan and Hreidarsson, Stefan J. and Saemundsen, Evald and Ahn, Joo Wook and Ogilvie, Caroline and Girirajan, Santhosh D. and Stefansson, Hreinn and Stefansson, Kari and O'Donovan, Michael C. and Owen, Michael J. and Bassett, Anne and Kirov, George}, title = {Parental Origin of Interstitial Duplications at 15q11.2-q13.3 in Schizophrenia and Neurodevelopmental Disorders}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {5}, doi = {10.1371/journal.pgen.1005993}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166706}, pages = {e1005993}, year = {2016}, abstract = {Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76\% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033\% compared to 0.0069\% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50\% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.}, language = {en} } @article{NeufangAkhrifHerrmannetal.2016, author = {Neufang, S. and Akhrif, A. and Herrmann, C.G. and Drepper, C. and Homola, G.A. and Nowak, J. and Waider, J. and Schmitt, A.G. and Lesch, K.-P. and Romanos, M.}, title = {Serotonergic modulation of 'waiting impulsivity' is mediated by the impulsivity phenotype in humans}, series = {Translational Psychiatry}, journal = {Translational Psychiatry}, number = {6}, doi = {10.1038/tp.2016.210}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164418}, pages = {e940}, year = {2016}, abstract = {In rodents, the five-choice serial reaction time task (5-CSRTT) has been established as a reliable measure of waiting impulsivity being defined as the ability to regulate a response in anticipation of reinforcement. Key brain structures are the nucleus accumbens (NAcc) and prefrontal regions (for example, pre- and infralimbic cortex), which are, together with other transmitters, modulated by serotonin. In this functional magnetic resonance imaging study, we examined 103 healthy males while performing the 5-CSRTT measuring brain activation in humans by means of a paradigm that has been widely applied in rodents. Subjects were genotyped for the tryptophan hydroxylase-2 (TPH2; G-703T; rs4570625) variant, an enzyme specific for brain serotonin synthesis. We addressed neural activation patterns of waiting impulsivity and the interaction between the NAcc and the ventromedial prefrontal cortex (vmPFC) using dynamic causal modeling. Genetic influence was examined via interaction analyses between the TPH2 genotype (GG homozygotes vs T allele carriers) and the degree of impulsivity as measured by the 5-CSRTT. We found that the driving input of the vmPFC was reduced in highly impulsive T allele carriers (reflecting a reduced top-down control) in combination with an enhanced response in the NAcc after correct target processing (reflecting an augmented response to monetary reward). Taken together, we found a high overlap of our findings with reports from animal studies in regard to the underlying cognitive processes, the brain regions associated with waiting impulsivity and the neural interplay between the NAcc and vmPFC. Therefore, we conclude that the 5-CSRTT is a promising tool for translational studies.}, language = {en} } @article{vandeKerkhofFekkesvanderHeijdenetal.2016, author = {van de Kerkhof, Nora WA and Fekkes, Durk and van der Heijden, Frank MMA and Hoogendijk, Witte JG and St{\"o}ber, Gerald and Egger, Jos IM and Verhoeven, Willem MA}, title = {Cycloid psychoses in the psychosis spectrum: evidence for biochemical differences with schizophrenia}, series = {Neuropsychiatric Disease and Treatment}, volume = {12}, journal = {Neuropsychiatric Disease and Treatment}, doi = {10.2147/NDT.S101317}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166255}, pages = {1927-1933}, year = {2016}, abstract = {Cycloid psychoses (CP) differ from schizophrenia regarding symptom profile, course, and prognosis and over many decades they were thought to be a separate entity within the psychosis spectrum. As to schizophrenia, research into the pathophysiology has focused on dopamine, brain-derived neurotrophic factor, and glutamate signaling in which, concerning the latter, the N-methyl-d-aspartate receptor plays a crucial role. The present study aims to determine whether CP can biochemically be delineated from schizophrenia. Eighty patients referred for psychotic disorders were assessed with the Comprehensive Assessment of Symptoms and History, and (both at inclusion and after 6 weeks of antipsychotic treatment) with the Positive and Negative Syndrome Scale and Clinical Global Impression. From 58 completers, 33 patients were diagnosed with schizophrenia and ten with CP according to the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, and Leonhard criteria, respectively. Fifteen patients were diagnosed with other disorders within the psychosis spectrum. At both time points, blood levels of the dopamine metabolite homovanillic acid, brain-derived neurotrophic factor, and amino acids related to glutamate neurotransmission were measured and compared with a matched control sample. Patients with CP showed a significantly better response to antipsychotic treatment as compared to patients with schizophrenia. In CP, glycine levels were elevated and tryptophan levels were lowered as compared to schizophrenia. Glutamate levels were increased in both patient groups as compared to controls. These results, showing marked differences in both treatment outcome and glutamate-related variable parameters, may point at better neuroplasticity in CP, necessitating demarcation of this subgroup within the psychosis spectrum.}, language = {en} } @article{DomschkeZwanzgerRehbeinetal.2016, author = {Domschke, Katharina and Zwanzger, Peter and Rehbein, Maimu A and Steinberg, Christian and Knoke, Kathrin and Dobel, Christian and Klinkenberg, Isabelle and Kugel, Harald and Kersting, Anette and Arolt, Volker and Pantev, Christo and Junghofer, Markus}, title = {Magnetoencephalographic correlates of emotional processing in major depression before and after pharmacological treatment}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {2}, doi = {10.1093/ijnp/pyv093}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149873}, pages = {pyv093}, year = {2016}, abstract = {Background: In major depressive disorder (MDD), electrophysiological and imaging studies suggest reduced neural activity in the parietal and dorsolateral prefrontal cortex regions. In the present study, neural correlates of emotional processing in MDD were analyzed for the first time in a pre-/post-treatment design by means of magnetoencephalography (MEG), allowing for detecting temporal dynamics of brain activation. Methods: Twenty-five medication-free Caucasian in-patients with MDD and 25 matched controls underwent a baseline MEG session with passive viewing of pleasant, unpleasant, and neutral pictures. Fifteen patients were followed-up with a second MEG session after 4 weeks of antidepressant monopharmacotherapy with mirtazapine. The corresponding controls received no intervention between the measurements. The clinical course of depression was assessed using the Hamilton Depression scale. Results: Prior to treatment, an overall neocortical hypoactivation during emotional processing, particularly at the parietal regions and areas at the right temporoparietal junction, as well as abnormal valence-specific reactions at the right parietal and bilateral dorsolateral prefrontal cortex (dlPFC) regions were observed in patients compared to controls. These effects occurred <150ms, suggesting dysfunctional processing of emotional stimuli at a preconscious level. Successful antidepressant treatment resulted in a normalization of the hypoactivation at the right parietal and right temporoparietal regions. Accordingly, both dlPFC regions revealed an increase of activity after therapy. Conclusions: The present study provides neurophysiological evidence for dysfunctional emotional processing in a fronto-parieto-temporal network, possibly contributing to the pathogenesis of MDD. These activation patterns might have the potential to serve as biomarkers of treatment success.}, language = {en} } @article{AsthanaBrunhuberMuehlbergeretal.2016, author = {Asthana, Manish Kumar and Brunhuber, Bettina and M{\"u}hlberger, Andreas and Reif, Andreas and Schneider, Simone and Herrmann, Martin J.}, title = {Preventing the Return of Fear Using Reconsolidation Update Mechanisms Depends on the Met-Allele of the Brain Derived Neurotrophic Factor Val66Met Polymorphism}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {6}, doi = {10.1093/ijnp/pyv137}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-166217}, year = {2016}, abstract = {Background: Memory reconsolidation is the direct effect of memory reactivation followed by stabilization of newly synthesized proteins. It has been well proven that neural encoding of both newly and reactivated memories requires synaptic plasticity. Brain derived neurotrophic factor (BDNF) has been extensively investigated regarding its role in the formation of synaptic plasticity and in the alteration of fear memories. However, its role in fear reconsolidation is still unclear; hence, the current study has been designed to investigate the role of the BDNF val66met polymorphism (rs6265) in fear memory reconsolidation in humans. Methods: An auditory fear-conditioning paradigm was conducted, which comprised of three stages (acquisition, reactivation, and spontaneous recovery). One day after fear acquisition, the experimental group underwent reactivation of fear memory followed by the extinction training (reminder group), whereas the control group (non-reminder group) underwent only extinction training. On day 3, both groups were subjected to spontaneous recovery of earlier learned fearful memories. The treat-elicited defensive response due to conditioned threat was measured by assessing the skin conductance response to the conditioned stimulus. All participants were genotyped for rs6265. Results: The results indicate a diminishing effect of reminder on the persistence of fear memory only in the Met-allele carriers, suggesting a moderating effect of the BDNF polymorphism in fear memory reconsolidation. Conclusions: Our findings suggest a new role for BDNF gene variation in fear memory reconsolidation in humans.}, language = {en} } @article{BiehlMerzDresleretal.2016, author = {Biehl, Stefanie C. and Merz, Christian J. and Dresler, Thomas and Heupel, Julia and Reichert, Susanne and Jacob, Christian P. and Deckert, J{\"u}rgen and Herrmann, Martin J.}, title = {Increase or Decrease of fMRI Activity in Adult Attention Deficit/ Hyperactivity Disorder: Does It Depend on Task Difficulty?}, series = {International Journal of Neuropsychopharmacology}, volume = {19}, journal = {International Journal of Neuropsychopharmacology}, number = {10}, doi = {10.1093/ijnp/pyw049}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147551}, pages = {pyw049}, year = {2016}, abstract = {Background: Attention deficit/hyperactivity disorder has been shown to affect working memory, and fMRI studies in children and adolescents with attention deficit/hyperactivity disorder report hypoactivation in task-related attentional networks. However, studies with adult attention deficit/hyperactivity disorder patients addressing this issue as well as the effects of clinically valid methylphenidate treatment are scarce. This study contributes to closing this gap. Methods: Thirty-five adult patients were randomized to 6 weeks of double-blind placebo or methylphenidate treatment. Patients completed an fMRI n-back working memory task both before and after the assigned treatment, and matched healthy controls were tested and compared to the untreated patients. Results: There were no whole-brain differences between any of the groups. However, when specified regions of interest were investigated, the patient group showed enhanced BOLD responses in dorsal and ventral areas before treatment. This increase was correlated with performance across all participants and with attention deficit/hyperactivity disorder symptoms in the patient group. Furthermore, we found an effect of treatment in the right superior frontal gyrus, with methylphenidate-treated patients exhibiting increased activation, which was absent in the placebo-treated patients. Conclusions: Our results indicate distinct activation differences between untreated adult attention deficit/hyperactivity disorder patients and matched healthy controls during a working memory task. These differences might reflect compensatory efforts by the patients, who are performing at the same level as the healthy controls. We furthermore found a positive effect of methylphenidate on the activation of a frontal region of interest. These observations contribute to a more thorough understanding of adult attention deficit/hyperactivity disorder and provide impulses for the evaluation of therapy-related changes.}, language = {en} } @article{StrekalovaMarkovaShevtsovaetal.2016, author = {Strekalova, Tatyana and Markova, Nataliia and Shevtsova, Elena and Zubareva, Olga and Bakhmet, Anastassia and Steinbusch, Harry M. and Bachurin, Sergey and Lesch, Klaus-Peter}, title = {Individual Differences in Behavioural Despair Predict Brain GSK-3beta Expression in Mice: The Power of a Modified Swim Test}, series = {Neural Plasticity}, volume = {2016}, journal = {Neural Plasticity}, doi = {10.1155/2016/5098591}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-147379}, pages = {5098591}, year = {2016}, abstract = {While deficient brain plasticity is a well-established pathophysiologic feature of depression, little is known about disorder-associated enhanced cognitive processing. Here, we studied a novel mouse paradigm that potentially models augmented learning of adverse memories during development of a depressive-like state. We used a modification of the classic two-day protocol of a mouse Porsolt test with an additional session occurring on Day 5 following the initial exposure. Unexpectedly, floating behaviour and brain glycogen synthase kinase-3 beta (GSK-3beta) mRNA levels, a factor of synaptic plasticity as well as a marker of distress and depression, were increased during the additional swimming session that was prevented by imipramine. Observed increases of GSK-3beta mRNA in prefrontal cortex during delayed testing session correlated with individual parameters of behavioural despair that was not found in the classic Porsolt test. Repeated swim exposure was accompanied by a lower pGSK-3beta/GSK-3beta ratio. A replacement of the second or the final swim sessions with exposure to the context of testing resulted in increased GSK-3beta mRNA level similar to the effects of swimming, while exclusion of the second testing prevented these changes. Together, our findings implicate the activation of brain GSK-3beta expression in enhanced contextual conditioning of adverse memories, which is associated with an individual susceptibility to a depressive syndrome.}, language = {en} } @article{HerrmannBeierSimonsetal.2016, author = {Herrmann, Martin J. and Beier, Jennifer S. and Simons, Bibiane and Polak, Thomas}, title = {Transcranial Direct Current Stimulation (tDCS) of the Right Inferior Frontal Gyrus Attenuates Skin Conductance Responses to Unpredictable Threat Conditions}, series = {Frontiers in Human Neuroscience}, volume = {10}, journal = {Frontiers in Human Neuroscience}, number = {352}, doi = {10.3389/fnhum.2016.00352}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146486}, year = {2016}, abstract = {Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F(2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t(24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders.}, language = {en} } @phdthesis{Froehlich2016, author = {Fr{\"o}hlich, Sarah}, title = {Modulation von „Sustained fear" durch transkranielle Gleichstromstimulation (tDCS)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Transkraniale Gleichstromstimulation (tDCS) stellt eine neue Therapieoption f{\"u}r Patienten mit neurologischen und psychiatrischen Erkrankungen dar. tDCS ist eine nichtinvasive Methode, mit der das Membranpotential von Nervenzellen ver{\"a}ndert wird. Eine Depolarisation f{\"u}hrt zu einer Erh{\"o}hung des Potentials, eine Hyperpolarisation bewirkt eine Senkung. Diesen neuromodulatorischen Effekt hat man sich in der vorliegenden Arbeit zunutze gemacht. Im Versuchsaufbau wurde die Modulation von „sustained fear" durch tDCS getestet. Das angewandte Paradigma ist nach dem Prinzip des NPU-Tests von Grillon aufgebaut. Mithilfe von vorhersehbaren und unvorhersehbaren aversiven Reizen (menschlicher Schrei) ist eine Einsch{\"a}tzung von kurz- („phasic") und langanhaltenden („sustained") Angstreaktionen m{\"o}glich. Der Startle Reflex wurde zur Erfassung dieses Angstzustands aufgezeichnet. Gesunde Probanden (n=74) erfuhren eine 20-min{\"u}tige tDCS Stimulation mit einer Stromst{\"a}rke von 1 mA bei einer Elektrodengr{\"o}ße von 35 cm². Es ergab sich somit eine Stromdichte von 0,0286 mA/cm². Es konnte ein signifikanter Effekt von tDCS auf „sustained fear" nachgewiesen werden. Die neuromodulatorische Wirkung stellte sich bei anodaler Stimulation durch ver{\"a}nderte Startle Statistiken im Vergleich zur Sham Kontrollgruppe dar. „Phasic fear" zeigte keine nachweisbare Wirkung der Gleichstromstimulation. Gegenstand der Arbeit war außerdem die Untersuchung des Paradigmas zur Analyse von „phasic" und „sustained fear" auf subjektiver und psychophysiologischer Ebene. Mithilfe von Startle Daten und dreier spezieller Frageb{\"o}gen war dies m{\"o}glich (STAI X1, PANAS, SAM). Die Startle Daten bewiesen eine Einflussnahme der Bedingungen (vorhersehbar, unvorhersehbar, neutral). Zudem war der Reflex davon abh{\"a}ngig, ob den Probanden eine Vorwarnung angezeigt wurde (ITI, Cue). Eine Vorank{\"u}ndigung der aversiven Reize bewirkte eine erh{\"o}hte Anspannung, weshalb die Startle Reaktion bei der vorhersehbaren Bedingung am st{\"a}rksten ausfiel. Ohne Vorwarnung (ITI) war die durchschnittliche Reaktion auf einen unvorhersehbaren Schrei am gr{\"o}ßten. Nicht angek{\"u}ndigte Stimuli l{\"o}sten eine starke Stressreaktion aus, woraufhin eine anhaltende Alarmbereitschaft bei den Probanden entstand. „Sustained fear" ergab sich aus den unvorhersehbaren Bedingungen mit und ohne Warnhinweise (ITI U-Cue U). Nach subjektiver Einsch{\"a}tzung der Versuchsteilnehmer/-innen best{\"a}tigte der STAI X1 und der PANAS einen Anstieg der emotionalen Anspannung durch das Paradigma. Der psychologische Einfluss des Paradigmas spiegelte sich auch im Rating des SAM-Tests wider. Vor allem der Effekt vorhersehbarer und unvorhersehbarer Ereignisse ergab {\"u}bereinstimmend signifikante Werte, analog zu den Startle Daten. Die statistische Auswertung zeigt Erfolg versprechende Ans{\"a}tze in Bezug auf den Einfluss der Gleichstromstimulation auf das Angstverhalten. Durch den Versuchsaufbau einer plazebokontrollierten, randomisierten Doppelblindstudie kann von sehr verl{\"a}sslichen Ergebnissen mit großer Aussagekraft ausgegangen werden. Die nachgewiesene tDCS Wirkung gilt es nun anhand weiterf{\"u}hrender Studien genauer zu untersuchen. Variable Parameter wie Stromintensit{\"a}t, Stimulationsdauer, Elektrodengr{\"o}ße und -position, aber auch interindividuelle Aspekte wie Alter, Geschlecht oder genetische Unterschiede m{\"u}ssen in Vergleichsuntersuchungen m{\"o}glicherweise mit einem gr{\"o}ßeren Probandenkollektiv {\"u}berpr{\"u}ft werden. Dar{\"u}ber hinaus wurde die Studie zun{\"a}chst an gesunden Probanden getestet. F{\"u}r eine Anwendung von tDCS bei Angstst{\"o}rungen m{\"u}ssen gesondert Versuche durchgef{\"u}hrt werden. Die Daten liefern einen wichtigen Beitrag zur tDCS Forschung und haben weitreichende Bedeutung f{\"u}r die Entwicklung neuer Therapiem{\"o}glichkeiten im klinischen Alltag.}, subject = {tDCS}, language = {de} } @phdthesis{Schwarz2016, author = {Schwarz, Ricarda}, title = {Methylphenidat-induzierte Genexpression in lymphoblastoiden Zellen von adulten ADHS Patienten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-138855}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Mit dieser Studie sollte untersucht werden, ob ein Genexpressionsunterschied zwi- schen heterogenen erwachsenen ADHS-Patienten und gesunden Kontrollen besteht und eine Behandlung mit Methylphenidat kurz- oder langfristige Genexpressionsunter- schiede hervorruft. Außerdem war von Interesse, ob ein sich ein m{\"o}glicher Behand- lungseffekt durch MPH zwischen ADHS- und Kontrollgruppe unterscheidet. Dazu wurde ein peripheres Zellmodell mit EBV-modifizierten Lymphoblasten von ADHS-Patienten und Kontrollen gew{\"a}hlt, deren RNA f{\"u}r die weiteren Versuche genutzt wurde. In Vor- versuchen sollte die Verwendung von MPH f{\"u}r die Versuchsmodellbedingungen opti- miert werden. In der vorliegenden Arbeit konnte anhand der Parameter Zellkonzentration und Zellgr{\"o}ße kein zelltoxischer Effekt von MPH in Konzentrationen bis 100 ng/µl ermittelt werden. Die Proben zeigten durchschnittlich sehr gute RNA-Konzentrationen (354 ng/µL), eine gute RNA-Qualit{\"a}t und nur leichte Verunreinigungen. Die hypothesenfreien Microarray-Untersuchung zeigte zum Zeitpunkt t4 und unter MPH-Behandlung 163 Gene an der Grenze zu statistischem Signifikanzniveau. Die aus den ersten 138 (p < 0,00139, korrigiert f{\"u}r multiples Testen p = 0,06) ausgew{\"a}hlten Genen ATXN1, GLUT3, GUCY1B3, HEY1, MAP3K8 und NAV2 zeigten in der anschließen- den qRT-PCR außer bei GUCY1B3 (zu allen Zeiten eine h{\"o}here Expression bei ADHS; p- Werte der aufsteigenden Zeitpunkte 0,002; 0,089; 0,027; 0,055 und 0,064) keine signi- fikanten Gruppenunterschiede zwischen ADHS-Probanden und Kontrollen. Allerdings konnten bei ATXN1, GLUT3, HEY1, MAP3K8 und NAV2 statistisch relevante Behandlungseffekte durch MPH beobachtet werden. Sie unterschieden sich in beiden Gruppen. Kurzzeiteffekte (innerhalb 1 bzw. 6h) traten ausschließlich bei der ADHS- Gruppe, Langzeiteffekte (2 Wochen) nur bei Kontrollen auf. Bei ADHS-Zellen wurde zum Zeitpunkt t1 die Expression von ATXN1 (p = 0,012) und NAV2 (p = 0,001) unter MPH erh{\"o}ht. Eine signifikant geringerer kurzfristiger Genexpressionsanstieg zeigte sich bei MAP3K8 (p = 0,005). Im dynamischen Verlauf zeigte sich eine signifikante Genexpressi- onssteigerung innerhalb von einer Woche (t3) bei ATXN1 (p= 0,057) und HEY1 (0,042). Bei Kontrollzellen f{\"u}hrte die MPH-Behandlung zu signifikanten Genexpressionsunter- schieden zum Zeitpunkt t4 bei GLUT3 ((p = 0,044) und MAP3K8 (p = 0,005) und im dy- namischen Verlauf zu h{\"o}heren Expressionsanstiegen innerhalb von zwei Wochen (t4) bei GLUT3 (p = 0,033) und MAP3K8 (p = 0,005). Zumindest in dem untersuchten Gen GUCY1B3 gibt es also Expressionsunterschiede zwischen ADHS- und Kontrollgruppe. Methylphenidat beeinflusst die Genexpression in peripheren Zellen, obwohl seine Hauptwirkung im zentralen Nervensystem erzielt wird. Ob es sich dabei um eine Wirkung oder Nebenwirkung handelt, bleibt offen. Es gibt sowohl lang- als auch kurzfristige Genexpressionsver{\"a}nderungen, wobei die kurzfristi- gen bei ADHS, die langfristigen in der Kontrollgruppe detektiert wurden. Damit unter- scheidet sich der Effekt von MPH auf die Genexpression peripherer Zellen zwischen ADHS und Kontrollgruppe. Die untersuchten Gene beeinflussen unterschiedliche Signalwege. Besonders hervor- zuheben sind das Dopaminsystem, der Notch- und NO-Signalweg. Da die Genprodukte jeweils nur ein Element l{\"a}ngerer Signalkaskaden darstellen und oft auch mit mehreren Wegen interagieren, ist es schwer, direkte und indirekte Wirkungen von MPH zu unter- scheiden. Es gibt allerdings Hinweise, dass die untersuchten Gene sowie deren Ver{\"a}n- derung durch MPH im pr{\"a}frontalen Kortex, dem limbischen System, Basalganglien und Kleinhirnarealen und dem aufsteigenden retikul{\"a}ren aktivierenden System (ARAS) eine wichtige Rollen spielen. Dies {\"a}ußert sich schon in der embryonalen Hirnentwicklung, neuronalen Differenzierung und Synapsenbildung und hat Einfluss auf Aufmerksamkeit, Ged{\"a}chtnis, Lernen, motorische Kontrolle und Emotionen. Diese Ergebnisse m{\"u}ssen nun in einer gr{\"o}ßeren Stichprobe validiert werden. Somit k{\"o}nnten einige Effekte, die hier als nominal bezeichnet wurden, in einer gr{\"o}ßeren Stichprobe signifikante Werte erreichen, w{\"a}hrend andere Unterschiede evtl. auch ver- schwinden k{\"o}nnten. Außerdem sollte ber{\"u}cksichtigt werden, dass nicht alle ADHS- Patienten auf eine Behandlung mit MPH ansprechen. Es ist also sinnvoll, eine Subgrup- penanalyse zwischen MPH-Resondern und Non-Respondern durchzuf{\"u}hren. In weiteren Untersuchungen ist es notwendig, Behandlungseffekte durch MPH in neu- ronalen Zelllinien zu untersuchen, da ADHS prim{\"a}r eine St{\"o}rung des zentralen Nerven- systems darstellt, welches auch therapeutisch von MPH angesteuert wird.}, subject = {ADHS}, language = {de} }