@article{SeherNickelMuelleretal.2011, author = {Seher, Axel and Nickel, Joachim and Mueller, Thomas D. and Kneitz, Susanne and Gebhardt, Susanne and Meyer ter Vehn, Tobias and Schlunck, Guenther and Sebald, Walter}, title = {Gene expression profiling of connective tissue growth factor (CTGF) stimulated primary human tenon fibroblasts reveals an inflammatory and wound healing response in vitro}, series = {Molecular Vision}, volume = {17}, journal = {Molecular Vision}, number = {08. Okt}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140189}, pages = {53-62}, year = {2011}, abstract = {Purpose: The biologic relevance of human connective tissue growth factor (hCTGF) for primary human tenon fibroblasts (HTFs) was investigated by RNA expression profiling using affymetrix (TM) oligonucleotide array technology to identify genes that are regulated by hCTGF. Methods: Recombinant hCTGF was expressed in HEK293T cells and purified by affinity and gel chromatography. Specificity and biologic activity of hCTGF was confirmed by biosensor interaction analysis and proliferation assays. For RNA expression profiling HTFs were stimulated with hCTGF for 48h and analyzed using affymetrix (TM) oligonucleotide array technology. Results were validated by real time RT-PCR. Results: hCTGF induces various groups of genes responsible for a wound healing and inflammatory response in HTFs. A new subset of CTGF inducible inflammatory genes was discovered (e.g., chemokine [C-X-C motif] ligand 1 [CXCL1], chemokine [C-X-C motif] ligand 6 [CXCL6], interleukin 6 [IL6], and interleukin 8 [IL8]). We also identified genes that can transmit the known biologic functions initiated by CTGF such as proliferation and extracellular matrix remodelling. Of special interest is a group of genes, e.g., osteoglycin (OGN) and osteomodulin (OMD), which are known to play a key role in osteoblast biology. Conclusions: This study specifies the important role of hCTGF for primary tenon fibroblast function. The RNA expression profile yields new insights into the relevance of hCTGF in influencing biologic processes like wound healing, inflammation, proliferation, and extracellular matrix remodelling in vitro via transcriptional regulation of specific genes. The results suggest that CTGF potentially acts as a modulating factor in inflammatory and wound healing response in fibroblasts of the human eye.}, language = {en} } @phdthesis{Schenk2007, author = {Schenk, Rita}, title = {Impact of the CCN-proteins CYR61/CCN1 and WISP3/CCN6 on mesenchymal stem cells and endothelial progenitor cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {CYR61 and WISP3 belong to the family of CCN-proteins. These proteins are characterised by 10\% cysteine residues whose positions are strictly conserved. The proteins are extracellular signalling molecules that can be associated with the extracellular matrix. CCN-proteins function in a cell- and tissue specific overlapping yet distinct manner. CCN-proteins are expressed and function in several cells and tissues of the musculoskeletal system. In this study the impact of the angiogenic inducer cysteine-rich protein 61 (CYR61/CCN1) on endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) as well as the wnt1 inducible signalling pathway protein 3 (WISP3/CCN6) on MSCs were elucidated. EPCs are promising cells to induce neovascularisation in ischemic regions as tissue engineered constructs. A major drawback is the small amount of cells that can be obtained from patients; therefore a stimulating factor to induce in vitro propagation of EPCs is urgently needed. In this study, mononuclear cells obtained from peripheral blood were treated with 0.5 µg/ml CYR61, resulting in an up to 7-fold increased cell number within one week compared to untreated control cells. To characterise if EPCs treated with CYR61 display altered or maintained EPC phenotype, the expression of the established markers CD34, CD133 and KDR as well as the uptake of acLDL and concurrent staining for ulex lectin was analysed. Both CYR61 treated and untreated control cells displayed EPCs characteristics, indicating that CYR61 treatment induces EPC number without altering their phenotype. Further studies revealed that the stimulating effect of CYR61 on EPCs is due to enhanced adhesion, rather than improved proliferation. Usage of mutated CYR61-proteins showed that the adhesive effect is mediated, at least partly, by the integrin \&\#945;6\&\#946;1, while the integrin \&\#945;\&\#965;\&\#946;3 has no influence. Endogenous expression of CYR61 was not detectable in EPCs, which indicated that control cells are not influenced by endogenous secretion of CYR61 and also could explain the dose-dependent effect of CYR61 that is measured at a low concentration of 0.05 µg/ml. MSCs were treated with 0.5 µg/ml CYR61, a combination of growth factors including VEGF, both together and compared to untreated control cells. Matrigel angiogenesis assay revealed an induction of angiogenesis, detected by induced sprouting of the cells, after CYR61 treatment of the MSC. Induced sprouting and vessel like structure formation after CYR61 treatment was similar to the results obtained after treatment with growth factors including the established angiogenesis inducer VEGF. This result clearly demonstrates the angiogenic potential of CYR61 on MSCs. Further studies revealed a migrative and proliferative effect of CYR61 on MSCs. Both properties are crucial for the induction of angiogenesis thus further strengthening the view of CYR61 as an angiogenic inducer. MSCs and EPCs are promising cells for tissue engineering applications in bone remodelling and reconstruction. MSCs due to their potential to differentiate into other lineages; EPCs induce neovascularisation within the construct. Both cell types respond to CYR61 treatment. Furthermore EPCs home to sides were CYR61 expression is detectable and both are induced by similar stimulators. Therefore CYR61 is a promising factor for tissue engineered bone reconstruction applications. WISP3 is expressed in cartilage in vivo and in chondrocytes in vitro. Loss of function mutations in the WISP3 gene are associated to the inherited human disease progressive pseudorheumatoid dysplasia (PPD), that is characterised by cartilage loss and bone and joint destruction. Since MSCs also express the protein, the aim of this study was to elucidate if recombinant protein targets MSCs. A migratory effect of WISP3 treatment on MSCs and osteogenic differentiated MSCs has been proven in this study. To elucidate if global gene expression patterns are influenced by WISP3, cells were treated with 0.5 µg/ml WISP3 and compared to untreated control MSCs. Gene expression study by using affymetrix technology revealed an induction of interferon inducible genes including CXCL chemokines and members of the TNFSF family. Reevaluation by RT-PCR on identical RNA and an additional time series confirmed the results. Although no established cartilage associated genes were detected as regulated genes within this 24h treatment, anti-angiogenic and immunosuppressive genes indicate a protective role of WISP3 for the cartilage, which is sensitive to inflammatory processes. Both CCN-proteins CYR61 and WISP3 are valuable for the musculoskeletal system. This and previous studies revealed the role of CYR61 for osteogenesis and angiogenesis of tissue engineered applications. WISP3 is responsible for development, protection and maintenance of cartilage. Therefore further studies with the proteins in the musculoskeletal system are of high relevance.}, subject = {Endothel}, language = {en} }