@article{FeifelWagnerRoederStrohmannetal.1990, author = {Feifel, R. and Wagner-R{\"o}der, M. and Strohmann, C. and Tacke, Reinhold and Waelbroeck, M. and Christophe, J. and Mutschler, E. and Lambrecht, G.}, title = {Stereoselective inhibition of muscarinic receptor subtypes by the enantiomers of hexahydro-difenidol and acetylenic analogues}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-64002}, year = {1990}, abstract = {1 Tbc affinities of the (R)- and (S)-enantiomers of hexahydro-difenidol (1) and its acetylenie analogues hexbutinol (2), hexbutinol methiodide (3) and p-fluoro-hexbutinol (4) (stereochemieal purity > 99.8\%) for musearlnie receptors in rabbit vas deferens (M1), guinea-pig atria (M2) and guinea-pig ileum (M3) were measured by dose-ratio experiments. 2 The (R)-enantiomers consistently showed higher aßinities than the (S)-isomers. The stereosclectivity ratios [(R)/(S)] wcrc greatest with thc enantiomers of 1 (vas deferens: 550; ilcum: 191; atria: 17) and least with thosc ofthc p-Fluoro-analogue 4 (vas defercns: 34; ileum: 8.5; atria: 1.7). 3 The enantiomerie potency ratios for compounds 1-4 were highest in rabbit vas deferens, intermediate in guinea-pig ileum and much less in guinea-pig atria. Thus, these ratios may serve as a predietor of muscarinic receptor subtype identity. 4 (S)-p-Fluoro-hexbutinol [(S)-4] showed a novel receptor selectivity profile with preference for M\(_3\) receptors: M\(_3\) > M\(_2\) \(\geq\) M\(_1\)• 5 These results do not conform to Pfeiffer's rule that aetivity differences between enantiomers are greater with more potent compounds.}, subject = {Anorganische Chemie}, language = {en} } @article{LambrechtFeifelWagnerRoederetal.1989, author = {Lambrecht, G. and Feifel, R. and Wagner-R{\"o}der, M. and Strohmann, C. and Zilch, H. and Tacke, Reinhold and Waelbroeck, M. and Christophe, J. and Boddeke, H. and Mutschler, E.}, title = {Affinity profiles of hexahydro-sila-difenidol analogues at muscarinic receptor subtypes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63979}, year = {1989}, abstract = {In an attempt to assess the structural requirements of hexahydro-sila-difenidol for potency and selectivity, a series of analogues modified in the amino group and the phenyl ring were investigated for their affinity to muscarinic M1- (rabbit vas deferens), Mr (guinea-pig atria) and Mr (guinea-pig ileum) receptors. All compounds were competitive antagonists in the three tissues. Their affinities to the three muscarinic receptor subtypes differed by more than two orders of magnitude and the observed receptor selectivities were not associated with high affinity. The pyrrolidino and hexamethyleneimino analogues, compounds substituted in the phenylring with a methoxy group or a chlorine atom as weil as p-fluoro-hexahydro-difenidol displayed the same affinity profile as the parent compound, hexahydro-sila-difenidol: M1 = M3 > M2 • A different selectivity patternwas observed for p-fluoro-hexahydro-sila-difenidol: M3 > M1 > M2 • This compound exhibited its highest affinity for M3-receptors in guinea-pig ileum (pA 2 = 7.84), intermediate affinity for M1-receptors in rabbit vas deferens (pA 2 = 6.68) and lowest affinity for the Mrreceptors in guinea-pig atria (pA 2 = 6.01). This receptor selectivity profile of p-fluoro-hexahydro-sila-difenidol was confirmed in ganglia (M1), atria (M2 ) and ileum (M 3 ) of the rat. Furthermore, dose ratios obtained with either pirenzepine (Mt) or hexahydrosila- difenidol (M2 and M3) and the p-fluoro analogue used in combination suggested that the antagonism was additive, implying mutual competition with a single population of muscarinic receptor subtypes. These results indicate that p-fluoro-hexahydro-sila-difenidol represents a valuable tool for characterization of muscarinic receptor subtypes.}, subject = {Anorganische Chemie}, language = {en} }