@article{SchwemmleinMaackBertero2022, author = {Schwemmlein, Julia and Maack, Christoph and Bertero, Edoardo}, title = {Mitochondria as therapeutic targets in heart failure}, series = {Current Heart Failure Reports}, volume = {19}, journal = {Current Heart Failure Reports}, number = {2}, doi = {10.1007/s11897-022-00539-0}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-324015}, pages = {27-37}, year = {2022}, abstract = {Purpose of Review We review therapeutic approaches aimed at restoring function of the failing heart by targeting mitochondrial reactive oxygen species (ROS), ion handling, and substrate utilization for adenosine triphosphate (ATP) production. Recent Findings Mitochondria-targeted therapies have been tested in animal models of and humans with heart failure (HF). Cardiac benefits of sodium/glucose cotransporter 2 inhibitors might be partly explained by their effects on ion handling and metabolism of cardiac myocytes. Summary The large energy requirements of the heart are met by oxidative phosphorylation in mitochondria, which is tightly regulated by the turnover of ATP that fuels cardiac contraction and relaxation. In heart failure (HF), this mechano-energetic coupling is disrupted, leading to bioenergetic mismatch and production of ROS that drive the progression of cardiac dysfunction. Furthermore, HF is accompanied by changes in substrate uptake and oxidation that are considered detrimental for mitochondrial oxidative metabolism and negatively affect cardiac efficiency. Mitochondria lie at the crossroads of metabolic and energetic dysfunction in HF and represent ideal therapeutic targets.}, language = {en} } @article{SacchettoSequeiraBerteroetal.2019, author = {Sacchetto, Claudia and Sequeira, Vasco and Bertero, Edoardo and Dudek, Jan and Maack, Christoph and Calore, Martina}, title = {Metabolic Alterations in Inherited Cardiomyopathies}, series = {Journal of Clinical Medicine}, volume = {8}, journal = {Journal of Clinical Medicine}, number = {12}, issn = {2077-0383}, doi = {10.3390/jcm8122195}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193806}, year = {2019}, abstract = {The normal function of the heart relies on a series of complex metabolic processes orchestrating the proper generation and use of energy. In this context, mitochondria serve a crucial role as a platform for energy transduction by supplying ATP to the varying demand of cardiomyocytes, involving an intricate network of pathways regulating the metabolic flux of substrates. The failure of these processes results in structural and functional deficiencies of the cardiac muscle, including inherited cardiomyopathies. These genetic diseases are characterized by cardiac structural and functional anomalies in the absence of abnormal conditions that can explain the observed myocardial abnormality, and are frequently associated with heart failure. Since their original description, major advances have been achieved in the genetic and phenotype knowledge, highlighting the involvement of metabolic abnormalities in their pathogenesis. This review provides a brief overview of the role of mitochondria in the energy metabolism in the heart and focuses on metabolic abnormalities, mitochondrial dysfunction, and storage diseases associated with inherited cardiomyopathies.}, language = {en} }