@article{DelgoboHeinrichsHapkeetal.2021, author = {Delgobo, Murilo and Heinrichs, Margarete and Hapke, Nils and Ashour, DiyaaElDin and Appel, Marc and Srivastava, Mugdha and Heckel, Tobias and Spyridopoulos, Ioakim and Hofmann, Ulrich and Frantz, Stefan and Ramos, Gustavo Campos}, title = {Terminally Differentiated CD4\(^+\) T Cells Promote Myocardial Inflammaging}, series = {Frontiers in Immunology}, volume = {12}, journal = {Frontiers in Immunology}, issn = {1664-3224}, doi = {10.3389/fimmu.2021.584538}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-229612}, year = {2021}, abstract = {The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4\(^+\) T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4\(^+\) T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4\(^+\) T cell compartment was primarily composed of na{\"i}ve cells defined as CCR7\(^+\)CD45RO\(^-\). However, when transplanted into young lymphocyte-deficient mice, CD4\(^+\) T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7\(^-\) CD45RO\(^+\)) and terminally-differentiated phenotypes (CCR7\(^-\)CD45RO\(^-\)), as typically seen in elderly. Differentiated CD4\(^+\) T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4\(^+\) T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4\(^+\) T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice.}, language = {en} } @article{SchlechtThienWolfetal.2021, author = {Schlecht, Anja and Thien, Adrian and Wolf, Julian and Prinz, Gabriele and Agostini, Hansj{\"u}rgen and Schlunck, G{\"u}nther and Wieghofer, Peter and Boneva, Stefaniya and Lange, Clemens}, title = {Immunosenescence in choroidal neovascularization (CNV) — Transcriptional profiling of na{\"i}ve and CNV-associated retinal myeloid cells during aging}, series = {International Journal of Molecular Sciences}, volume = {22}, journal = {International Journal of Molecular Sciences}, number = {24}, issn = {1422-0067}, doi = {10.3390/ijms222413318}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284342}, year = {2021}, abstract = {Immunosenescence is considered a possible factor in the development of age-related macular degeneration and choroidal neovascularization (CNV). However, age-related changes of myeloid cells (MCs), such as microglia and macrophages, in the healthy retina or during CNV formation are ill-defined. In this study, Cx3cr1-positive MCs were isolated by fluorescence-activated cell sorting from six-week (young) and two-year-old (old) Cx3cr1\(^{GFP/+}\) mice, both during physiological aging and laser-induced CNV development. High-throughput RNA-sequencing was performed to define the age-dependent transcriptional differences in MCs during physiological aging and CNV development, complemented by immunohistochemical characterization and the quantification of MCs, as well as CNV size measurements. These analyses revealed that myeloid cells change their transcriptional profile during both aging and CNV development. In the steady state, senescent MCs demonstrated an upregulation of factors contributing to cell proliferation and chemotaxis, such as Cxcl13 and Cxcl14, as well as the downregulation of microglial signature genes. During CNV formation, aged myeloid cells revealed a significant upregulation of angiogenic factors such as Arg1 and Lrg1 concomitant with significantly enlarged CNV and an increased accumulation of MCs in aged mice in comparison to young mice. Future studies need to clarify whether this observation is an epiphenomenon or a causal relationship to determine the role of immunosenescence in CNV formation.}, language = {en} } @article{Prelog2012, author = {Prelog, Martina}, title = {Differential Approaches for Vaccination from Childhood to Old Age}, series = {Gerontology}, volume = {59}, journal = {Gerontology}, number = {3}, issn = {0304-324X}, doi = {10.1159/000343475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-196602}, pages = {230-239}, year = {2012}, abstract = {Primary prevention strategies, such as vaccinations at the age extremes, in neonates and elderly individuals, demonstrate a challenge to health professionals and public health specialists. The aspects of the differentiation and maturation of the adaptive immune system, the functional implications of immunological immaturity or immunosenescence and its impact on vaccine immunogenicity and efficacy will be highlighted in this review. Several approaches have been undertaken to promote Th1 responses in neonates and to enhance immune functions in elderly, such as conjugation to carrier proteins, addition of adjuvants, concomitant vaccination with other vaccines, change in antigen concentrations or dose intervals or use of different administration routes. Also, early protection by maternal vaccination seems to be beneficial in neonates. However, it also appears necessary to think of other end points than antibody concentrations to assess vaccine efficacy in neonates or elderly, as also the cellular immune response may be impaired by the mechanisms of immaturity, underlying health conditions, immunosuppressive treatments or immunosenescence. Thus, lifespan vaccine programs should be implemented to all individuals on a population level not only to improve herd protection and to maintain protective antibody levels and immune memory, but also to cover all age groups, to protect unvaccinated elderly persons and to provide indirect protection for neonates and small infants.}, language = {en} }