@article{EngelRudeliusSlawskaetal.2016, author = {Engel, Katharina and Rudelius, Martina and Slawska, Jolanta and Jacobs, Laura and Abhari, Behnaz Ahangarian and Altmann, Bettina and Kurutz, Julia and Rathakrishnan, Abirami and Fern{\´a}ndez-S{\´a}iz, Vanesa and Brunner, Andr{\"a} and Targosz, Bianca-Sabrina and Loewecke, Felicia and Gloeckner, Christian Johannes and Ueffing, Marius and Fulda, Simone and Pfreundschuh, Michael and Tr{\"u}mper, Lorenz and Klapper, Wolfram and Keller, Ulrich and Jost, Philipp J. and Rosenwald, Andreas and Peschel, Christian and Bassermann, Florian}, title = {USP9X stabilizes XIAP to regulate mitotic cell death and chemoresistance in aggressive B-cell lymphoma}, series = {EMBO Molecular Medicine}, volume = {8}, journal = {EMBO Molecular Medicine}, doi = {10.15252/emmm.201506047}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165016}, pages = {851-862}, year = {2016}, abstract = {The mitotic spindle assembly checkpoint (SAC) maintains genome stability and marks an important target for antineoplastic therapies. However, it has remained unclear how cells execute cell fate decisions under conditions of SAC-induced mitotic arrest. Here, we identify USP9X as the mitotic deubiquitinase of the X-linked inhibitor of apoptosis protein (XIAP) and demonstrate that deubiquitylation and stabilization of XIAP by USP9X lead to increased resistance toward mitotic spindle poisons. We find that primary human aggressive B-cell lymphoma samples exhibit high USP9X expression that correlate with XIAP overexpression. We show that high USP9X/XIAP expression is associated with shorter event-free survival in patients treated with spindle poison-containing chemotherapy. Accordingly, aggressive B-cell lymphoma lines with USP9X and associated XIAP overexpression exhibit increased chemoresistance, reversed by specific inhibition of either USP9X or XIAP. Moreover, knockdown of USP9X or XIAP significantly delays lymphoma development and increases sensitivity to spindle poisons in a murine Eμ-Myc lymphoma model. Together, we specify the USP9X-XIAP axis as a regulator of the mitotic cell fate decision and propose that USP9X and XIAP are potential prognostic biomarkers and therapeutic targets in aggressive B-cell lymphoma.}, language = {en} } @article{WeisenbergerScheerBenavente1993, author = {Weisenberger, Dieter and Scheer, Ulrich and Benavente, Ricardo}, title = {The DNA topoisomerase I inhibitor camptothecin blocks postmitotic reformation of nucleoli in mammmalian cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-41434}, year = {1993}, abstract = {No abstract available}, subject = {Cytologie}, language = {en} } @article{BenaventeScheerChaly1989, author = {Benavente, Ricardo and Scheer, Ulrich and Chaly, Nathalie}, title = {Nucleocytoplasmic sorting of macromolecules following mitosis: fate of nuclear constituents after inhibition of pore complex function}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40777}, year = {1989}, abstract = {PtK2 cells in which pore complex-mediated transport is blocked by microinjection early in mitosis of a monoclonal antibody (specific for an Mr 68000 pore complex glycoprotein) or of wheat germ agglutinin (WGA) complete cytokinesis. However, their nuclei remain stably arrested in a telophase-like organization characterized by highly condensed chromatin and the absence of nucleoli, indicating a requirement for pore-mediated transport for the reassembly of interphase nuclei. We have now examined this requirement more closely by monitoring the behavior of individual nuclear macromolecules in microinjected cells using immunofluorescence microscopy and have investigated the effect of microinjecting the antibody or WGA on cellular ultrastructure. The absence of nuclear transport did not affect the sequestration into daughter nuclei of components such as DNA, DNA topoisomerase I and the nucleolar protein fibrillarin that are carried through mitosis on chromosomes. On the other hand, lamins, snRNAs and the p68 pore complex glycoprotein, all cytoplasmic during mitosis, remained largely cytoplasmic in the telophase-arrested cells. Electron microscopy showed the nuclei to be surrounded by a doublelayered membrane with some inserted pore complexes. In addition, however, a variety of membranous structures with associated pore complexes was regularly noted in the cytoplasm, suggesting that chromatin may not be essential for the postmitotic formation of pore complexes. We propose that cellular compartmentalization at telophase is a two-step process. First, a nuclear envelope tightly encloses the condensed chromosomes, excluding non-selectively all macromolecules not associated with the chromosomes. Interphase nuclear organization is then progressively restored by selective pore complex-mediated uptake of nuclear proteins from the cytoplasm.}, subject = {Cytologie}, language = {en} } @article{ThiryScheerGoessens1988, author = {Thiry, Marc and Scheer, Ulrich and Goessens, Guy}, title = {Immunoelectron microscopic study of nucleolar DNA during mitosis in Ehrlich tumour cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40745}, year = {1988}, abstract = {In order to investigate the DNA localization within Ehrlich tumor cell nucleoli during mitosis, two recent immunocytochemical methods using either an anti-DNA or an anti-bromodeoxyuridine (BrdU) monoclonal antibody have been applied. In both cases, the immunogold labeling has been performed on ultrathin sections of cells embedded either in Lowicryl K4M or in Epon, respectively. Identical results are observed with both immunocytochemical approaches. In the interphase nucleolus, besides the labeling of the perinucleolar chromatin shell and of its intranucleolar invaginations which penetrate into the nucleolar body and often terminate at the fibrillar centers, a few gold particles are also preferentially found towards the peripheral region of the fibrillar centers. In contrast, the dense fibrillar component and the granular component are never labeled. During mitosis, the fibrillar centers persist at the chromosomal nucleolus organizing regions (NOR's) and can be selectively stained by the silver method. However, these metaphase fibrillar centers are no longer decorated by the DNA- or BrdU antibodies. These results indicate that until the end of prophase, rRNA genes are present inside the fibrillar center material, disappear during metaphase and reappear in reconstituting nucleoli during telophase. Thus, fibrillar centers appear to represent structures sui generis, which are populated by rRNA genes only when the nucleolus is functionally active. In segregated nucleoli after actinomycin D treatment, the DNA labeling is exclusively restricted to the perinucleolar chromatin blocks. These findings also suggest that the DNA content of the fibrillar center material varies according to the rRNA transcription level of the cells. The results are discussed in the light of the present knowledge of the functional organization of the nucleolus.}, subject = {Cytologie}, language = {en} }