@article{deSouzaRiedererLeide2022, author = {de Souza, Aline Xavier and Riederer, Markus and Leide, Jana}, title = {Multifunctional contribution of the inflated fruiting calyx: implication for cuticular barrier profiles of the solanaceous genera Physalis, Alkekengi, and Nicandra}, series = {Frontiers in Plant Science}, volume = {13}, journal = {Frontiers in Plant Science}, issn = {1664-462X}, doi = {10.3389/fpls.2022.888930}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-280251}, year = {2022}, abstract = {Pivotal barrier properties of the hydrophobic plant cuticle covering aerial plant surfaces depend on its physicochemical composition. Among plant species and organs, compounds of this boundary layer between the plant interior and the environment vary considerably but cuticle-related studies comparing different organs from the same plant species are still scarce. Thus, this study focused on the cuticle profiles of Physalis peruviana, Physalis ixocarpa, Alkekengi officinarum, and Nicandra physalodes species. Inflated fruiting calyces enveloping fruits make Physalis, Alkekengi, and Nicandra highly recognizable genera among the Solanoideae subfamily. Although the inflation of fruiting calyces is well discussed in the literature still little is known about their post-floral functionalities. Cuticular composition, surface structure, and barrier function were examined and compared in fully expanded amphistomatous leaves, ripe astomatous fruits, and fully inflated hypostomatous fruiting calyces. Species- and organ-specific abundances of non-glandular and glandular trichomes revealed high structural diversity, covering not only abaxial and adaxial leaf surfaces but also fruiting calyx surfaces, whereas fruits were glabrous. Cuticular waxes, which limit non-stomatal transpiration, ranged from <1 μg cm\(^{-2}\) on P. peruviana fruiting calyces and N. physalodes fruits to 22 μg cm\(^{-2}\) on P. peruviana fruits. Very-long-chain aliphatic compounds, notably n-alkanes, iso-, and anteiso-branched alkanes, alkanols, alkanoic acids, and alkyl esters, dominated the cuticular wax coverages (≥86\%). Diversity of cuticular wax patterns rose from leaves to fruiting calyces and peaked in fruits. The polymeric cutin matrix providing the structural framework for cuticular waxes was determined to range from 81 μg cm\(^{-2}\) for N. physalodes to 571 μg cm\(^{-2}\) for A. officinarum fruits. Cuticular transpiration barriers were highly efficient, with water permeabilities being ≤5 × 10\(^{-5}\) m s\(^{-1}\). Only the cuticular water permeability of N. physalodes fruits was 10 × 10\(^{-5}\) m s\(^{-1}\) leading to their early desiccation and fruits that easily split, whereas P. peruviana, P. ixocarpa, and A. officinarum bore fleshy fruits for extended periods after maturation. Regarding the functional significance, fruiting calyces establish a physicochemical shield that reduces water loss and enables fruit maturation within a protective microclimate, and promotes different seed dispersal strategies among plant species investigated.}, language = {en} } @article{SchusterBurghardtAlfarhanetal.2016, author = {Schuster, Ann-Christin and Burghardt, Markus and Alfarhan, Ahmed and Bueno, Amauri and Hedrich, Rainer and Leide, Jana and Thomas, Jacob and Riederer, Markus}, title = {Effectiveness of cuticular transpiration barriers in a desert plant at controlling water loss at high temperatures}, series = {AoB Plants}, volume = {8}, journal = {AoB Plants}, doi = {10.1093/aobpla/plw027}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160963}, pages = {plw027}, year = {2016}, abstract = {Maintaining the integrity of the cuticular transpiration barrier even at elevated temperatures is of vital importance especially for hot-desert plants. Currently, the temperature dependence of the leaf cuticular water permeability and its relationship with the chemistry of the cuticles are not known for a single desert plant. This study investigates whether (i) the cuticular permeability of a desert plant is lower than that of species from non-desert habitats, (ii) the temperature-dependent increase of permeability is less pronounced than in those species and (iii) whether the susceptibility of the cuticular permeability barrier to high temperatures is related to the amounts or properties of the cutin or the cuticular waxes. We test these questions with Rhazya stricta using the minimum leaf water vapour conductance (gmin) as a proxy for cuticular water permeability. gmin of R. stricta (5.41 × 10\(^{-5}\) m s\(^{-1}\) at 25 °C) is in the upper range of all existing data for woody species from various non-desert habitats. At the same time, in R. stricta, the effect of temperature (15-50 °C) on gmin (2.4-fold) is lower than in all other species (up to 12-fold). Rhazya stricta is also special since the temperature dependence of gmin does not become steeper above a certain transition temperature. For identifying the chemical and physical foundation of this phenomenon, the amounts and the compositions of cuticular waxes and cutin were determined. The leaf cuticular wax (251.4 μg cm\(^{-2}\)) is mainly composed of pentacyclic triterpenoids (85.2\% of total wax) while long-chain aliphatics contribute only 3.4\%. In comparison with many other species, the triterpenoid-to-cutin ratio of R. stricta (0.63) is high. We propose that the triterpenoids deposited within the cutin matrix restrict the thermal expansion of the polymer and, thus, prevent thermal damage to the highly ordered aliphatic wax barrier even at high temperatures.}, language = {en} }