@phdthesis{RuedtvonCollenberg2021, author = {R{\"u}dt von Collenberg, Cora Freifrau}, title = {The role of Ciliary Neurotrophic Factor in hippocampal synaptic plasticity and learning}, doi = {10.25972/OPUS-20664}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206646}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ciliary neurotrophic factor (Cntf) acts as a differentiation and survival factor for different types of neurons and glial cells. It is expressed by peripheral Schwann cells and astrocytes in the central nervous system and mediates its effects via a receptor complex involving CntfRα, LifRß and gp130, leading to downstream activation of Stat3. Recent studies by our group have shown that Cntf modulates neuronal microtubule dynamics via Stat3/stathmin interaction. In a mouse model for motor neuron disease, i.e. pmn, Cntf is able to rescue axonal degeneration through Stat3/stathmin signaling. While these findings suggest a role of Cntf in controlling axonal functions in the neuromuscular system, additional data indicate that Cntf might also play a role in synaptic plasticity in the hippocampus. Electrophysiological recordings in hippocampal organotypic cultures and acute slices revealed a deficit in long-term potentiation (LTP) in Cntf -/- mice. This deficit was rescued by 24 h stimulation with Cntf, combined with an acute application of Cntf during LTP-measurements indicating that Cntf is both necessary and sufficient for hippocampal LTP, and possibly synaptic plasticity. Therefore, Cntf knockout mice were investigated to elucidate this possible role of Cntf in hippocampal LTP and synaptic plasticity. First, we validated the presence of Cntf in the target tissue: in the hippocampus, Cntf was localized in Gfap-positive astrocytes surrounding small blood vessels in the fissure and in meningeal areas close to the dentate gyrus. Laser micro-dissection and qPCR analysis showed a similar distribution of Cntf-coding mRNA validating the obtained immunofluorescent results. Despite the strong LTP deficit in organotypic cultures, in vivo behavior of Cntf -/- mice regarding hippocampus-dependent learning and anxiety-related paradigms was largely inconspicuous. However, western blot analysis of hippocampal organotypic cultures revealed a significant reduction of pStat3 levels in Cntf -/- cultures under baseline conditions, which in turn were elevated upon Cntf stimulation. In order to resolve and examine synaptic structures we turned to in vitro analysis of cultured hippocampal neurons which indicated that pStat3 is predominantly located in the presynapse. In line with these findings, presynapses of Cntf -/- cultures were reduced in size and when in contact to astrocytes, contained less pStat3 immunoreactivity compared to presynapses in wildtype cultures. In conclusion, our findings hypothesize that despite of a largely inconspicuous behavioral phenotype of Cntf -/- mice, Cntf appears to have an influence on pStat3 levels at hippocampal synapses. In a next step these two key questions need to be addressed experimentally: 1) is there a compensatory mechanism by members of the Cntf family, possibly downstream of pStat3, which explains the in vivo behavioral results of Cntf -/- mice and can likewise account for the largely inconspicuous phenotype in CNTF-deficient humans? 2) How exactly does Cntf influence LTP through Stat3 signaling? To unravel the underlying mechanism further experiments should therefore investigate whether microtubule dynamics downstream of Stat3 and stathmin signaling are involved in the Cntf-induced modulation of hippocampal synaptic plasticity, similar to as it was shown in motoneurons.}, subject = {Hippocampus}, language = {en} } @phdthesis{Saverschek2010, author = {Saverschek, Nicole}, title = {The influence of the symbiotic fungus on foraging decisions in leaf-cutting ants - Individual behavior and collective patterns}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-52087}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Foraging behavior is a particularly fascinating topic within the studies of social insects. Decisions made by individuals have effects not only on the individual level, but on the colony level as well. Social information available through foraging in a group modulates individual preferences and shapes the foraging pattern of a colony. Identifying parameters influencing foraging behavior in leaf-cutting ants is especially intriguing because they do not harvest for themselves, but for their symbiotic fungus which in turn influences their plant preferences after the incorporation of the substrate. To learn about the substrates' unsuitability for the fungus, ants need to be able to identify the incorporated substrate and associate it with detrimental effects on the fungus. Odor is an important plant characteristic known to be used as recognition key outside the nest in the context of foraging. Chapter 1 shows that foragers are able to recall information about the unsuitability of a substrate through odor alone and consequently reject the substrate, which leads to the conclusion that inside the nest, odor might be enough to indentify incorporated substrate. Identification of plant species is a key factor in the foraging success of leaf-cutting ants as they harvest a multitude of different plant species in a diverse environment and host plant availability and suitability changes throughout the year. Fixed plant preferences of individuals through innate tendencies are therefore only one factor influencing foraging decisions. On the individual as well as the colony level, foraging patterns are flexible and a result of an intricate interplay between the different members involved in the harvesting process: foragers, gardeners and the symbiotic fungus. In chapter 2 I identified several conditions necessary for na{\"i}ve foragers to learn about the unsuitability of substrate inside the nest. In order to exchange of information about the unsuitability of a substrate, the plant in question must be present in the fungus garden. Foragers can learn without own foraging experience and even without experiencing the effects of the substrate on the fungus, solely through the presence of experienced gardeners. The presence of experienced foragers alone on the other hand is not enough to lower the acceptance of substrate by na{\"i}ve foragers in the presence of na{\"i}ve gardeners, even if experienced foragers make up the majority of the workforce inside the nest. Experienced foragers are also able to reverse their previous negative experience and start accepting the substrate again. The individual behavior of foragers and gardeners with different experiential backgrounds in the presence of suitable or unsuitable substrate inside the fungus chamber was investigated in chapter 3 to shed some light on possible mechanisms involved in the flow of information about substrate suitability from the fungus to the ants. Gardeners as well as foragers are involved in the leaf processing and treatment of the applied leaf patches on the fungus. If the plant material is unsuitable, significantly more ants treat the plant patches, but foragers are less active overall. Contacts between workers initiated by either gardeners or foragers occur significantly more frequent and last longer if the substrate is unsuitable. Even though experienced gardeners increase na{\"i}ve foragers' contact rates and duration with other workers in the presence of suitable plant patches, na{\"i}ve foragers show no differences in the handling of the plant patches. This suggests that foragers gain information about plant suitability not only indirectly through the gardening workers, but might also be able to directly evaluate the effects of the substrate on the fungus themselves. Outside the nest, foragers influence each other the trail (chapter 4). Foraging in a group and the presence of social information is a decisive factor in the substrate choice of the individual and leads to a distinct and consentaneous colony response when encountering unfamiliar or unsuitable substrates. As leaf-cutting ants harvest different plant species simultaneously on several trails, foragers gain individual experiences concerning potential host plants. Preferences might vary among individuals of the same colony to the degree that foragers on the same trail perceive a certain substrate as either suitable or unsuitable. If the majority of foragers on the trail perceives one of the currently harvested substrates as unsuitable, na{\"i}ve foragers lower their acceptance within 4 hours. In the absence of a cue in the fungus, na{\"i}ve foragers harvesting by themselves still eventually (within 6 hours) reject the substrate as they encounter experienced gardeners during visits to the nest within foraging bouts. As foraging trails can be up to 100 m long and foragers spend a considerable amount of time away from the nest, learning indirectly from experienced foragers on the trail accelerates the distribution of information about substrate suitability. The level of rejection of a formerly unsuitable substrate after eight hours of foraging by na{\"i}ve foragers correlates with the average percentage of unladen experienced foragers active on the trail. This suggests that unladen experienced foragers might actively contact laden na{\"i}ve workers transmitting information about the unsuitability of the load they carry. Results from experiments were I observed individual laden foragers on their way back to the nest backed up this assumption as individuals were antennated and received bites into the leaf disk they carried. Individuals were contacted significantly more often by nestmates that perceived the carried leaf disk as unsuitable due to previous experience than by nestmates without this experience (chapter 6). Leaf-cutting ants constantly evaluate, learn and re-evaluate the suitability of harvested substrate and adjust their foraging activity accordingly. The importance of the different sources of information within the colony and their effect on the foraging pattern of the colony depend on the presence or absence of each of them as e.g. experienced foragers have a bigger influence on the plant preferences of na{\"i}ve foragers in the absence of a cue in the fungus garden.}, subject = {Blattschneiderameisen}, language = {en} } @phdthesis{Mishra2011, author = {Mishra, Dushyant}, title = {The content of olfactory memory in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66316}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {An animal depends heavily on its sense of smell and its ability to form olfactory associations as this is crucial for its survival. This thesis studies in two parts about such associative olfactory learning in larval Drosophila. The first part deals with different aspects of odour processing while the second part is concerned with aspects related to memory and learning. Chapter I.1 highlights how odour intensities could be integrated into the olfactory percept of larval Drosophila. I first describe the dose-effect curves of learnability across odour intensities for different odours and then choose odour intensities from these curves such that larvae are trained at intermediate odour intensity, but are tested for retention with either that trained intermediate odour intensity, or with respectively HIGHer or LOWer intensities. I observe a specificity of retention for the trained intensity for all the odours used. Further I compare these findings with the case of adult Drosophila and propose a circuit level model of how such intensity coding comes about. Such intensity specificity of learning adds to appreciate the richness in 'content' of olfactory memory traces, and to define the demands on computational models of olfaction and olfactory learning. Chapter I.2 provides a behaviour-based estimate of odour similarity using four different types of experiments to yield a combined, task-independent estimate of perceived difference between odour-pairs. Further comparison of these perceived differences to published measures of physico- chemical difference reveals a weak correlation. Notable exceptions to this correlation are 3-octanol and benzaldehyde. Chapter I.3 shows for two odours (3-octanol and 1-octene-3-ol) that perceptual differences between these odours can either be ignored after non-discriminative training (generalization), or accentuated by odour-specific reinforcement (discrimination). Anosmic Or83b1 mutants have lost these faculties, indicating that this adaptive adjustment is taking place downstream of Or83b expressing sensory neurons. Chapter II.1 of this thesis deals with food supplementation with dried roots of Rhodiola rosea. This dose-dependently improves odour- reward associative function in larval Drosophila. Supplementing fly food with commercially available tablets or extracts, however, does not have a 'cognitive enhancing' effect, potentially enabling us to differentiate between the effective substances in the root versus these preparations. Thus Drosophila as a genetically tractable study case should now allow accelerated analyses of the molecular mechanism(s) that underlie this 'cognitive enhancement' conveyed by Rhodiola rosea. Chapter II.2 describes the role of Synapsin, an evolutionarily conserved presynaptic phosphoprotein using a combined behavioural and genetic approach and asks where and how, this protein affects functions in associative plasticity of larval Drosophila. This study shows that a Synapsin-dependent memory trace can be pinpointed to the mushroom bodies, a 'cortical' brain region of the insects. On the molecular level, data in this study assign Synapsin as a behaviourally- relevant effector of the AC-cAMP-PKA cascade.}, subject = {Drosophila}, language = {en} } @phdthesis{EngelhardtgebChristiansen2013, author = {Engelhardt [geb. Christiansen], Frauke}, title = {Synaptic Connectivity in the Mushroom Body Calyx of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85058}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Learning and memory is considered to require synaptic plasticity at presynaptic specializations of neurons. Kenyon cells are the intrinsic neurons of the primary olfactory learning center in the brain of arthropods - the mushroom body neuropils. An olfactory mushroom body memory trace is supposed to be located at the presynapses of Kenyon cells. In the calyx, a sub-compartment of the mushroom bodies, Kenyon cell dendrites receive olfactory input provided via projection neurons. Their output synapses, however, were thought to reside exclusively along their axonal projections outside the calyx, in the mushroom body lobes. By means of high-resolution imaging and with novel transgenic tools, we showed that the calyx of the fruit fly Drosophila melanogaster also comprised Kenyon cell presynapses. At these presynapses, synaptic vesicles were present, which were capable of neurotransmitter release upon stimulation. In addition, the newly identified Kenyon cell presynapses shared similarities with most other presynapses: their active zones, the sites of vesicle fusion, contained the proteins Bruchpilot and Syd-1. These proteins are part of the cytomatrix at the active zone, a scaffold controlling synaptic vesicle endo- and exocytosis. Kenyon cell presynapses were present in γ- and α/β-type KCs but not in α/β-type Kenyon cells. The newly identified Kenyon cell derived presynapses in the calyx are candidate sites for an olfactory associative memory trace. We hypothesize that, as in mammals, recurrent neuronal activity might operate for memory retrieval in the fly olfactory system. Moreover, we present evidence for structural synaptic plasticity in the mushroom body calyx. This is the first demonstration of synaptic plasticity in the central nervous system of Drosophila melanogaster. The volume of the mushroom body calyx can change according to changes in the environment. Also size and numbers of microglomeruli - sub-structures of the calyx, at which projection neurons contact Kenyon cells - can change. We investigated the synapses within the microglomeruli in detail by using new transgenic tools for visualizing presynaptic active zones and postsynaptic densities. Here, we could show, by disruption of the projection neuron - Kenyon cell circuit, that synapses of microglomeruli were subject to activity-dependent synaptic plasticity. Projection neurons that could not generate action potentials compensated their functional limitation by increasing the number of active zones per microglomerulus. Moreover, they built more and enlarged microglomeruli. Our data provide clear evidence for an activity-induced, structural synaptic plasticity as well as for the activity-induced reorganization of the olfactory circuitry in the mushroom body calyx.}, subject = {Taufliege}, language = {en} } @phdthesis{Thum2006, author = {Thum, Andreas Stephan}, title = {Sugar reward learning in Drosophila : neuronal circuits in Drosophila associative olfactory learning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17930}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {Genetic intervention in the fly Drosophila melanogaster has provided strong evidence that the mushroom bodies of the insect brain act as the seat of memory traces for aversive and appetitive olfactory learning (reviewed in Heisenberg, 2003). In flies, electroshock is mainly used as negative reinforcer. Unfortunately this fact complicates a comparative consideration with other inscets as most studies use sugar as positive reinforcer. For example, several lines of evidence from honeybee and moth have suggested another site, the antennal lobe, to house neuronal plasticity underlying appetitive olfactory memory (reviewed in Menzel, 2001; Daly et al., 2004). Because of this I focused my work mainly on appetitive olfactory learning. In the first part of my thesis, I used a novel genetic tool, the TARGET system (McGuire et al., 2003), which allows the temporally controlled expression of a given effector gene in a defined set of cells. Comparing effector genes which either block neurotransmission or ablate cells showed important differences, revealing that selection of the appropriate effector gene is critical for evaluating the function of neural circuits. In the second part, a new engram of olfactory memory in the Drosophila projection neurons is described by restoring Rutabaga adenlylate cyclase (rut-AC) activity specifically in these cells. Expression of wild-type rutabaga in the projection neurons fully rescued the defect in sugar reward memory, but not in aversive electric shock memory. No difference was found in the stability of the appetitive memories rescued either in projection neurons or Kenyon cells. In the third part of the thesis I tried to understand how the reinforcing signals for sugar reward are internally represented. In the bee Hammer (1993) described a single octopaminergic neuron - called VUMmx1 - that mediates the sugar stimulus in associative olfactory reward learning. Analysis of single VUM neurons in the fly (Selcho, 2006) identified a neuron with a similar morphology as the VUMmx1 neuron. As there is a mutant in Drosophila lacking the last enzymatic step in octopamine synthesis (Monastirioti et al., 1996), Tyramine beta Hydroxylase, I was able to show that local Tyramine beta Hydroxylase expression successfully rescued sugar reward learning. This allows to conclude that about 250 cells including the VUM cluster are sufficient for mediating the sugar reinforcement signal in the fly. The description of a VUMmx1 similar neuron and the involvement of the VUM cluster in mediating the octopaminergic sugar stimulus are the first steps in establishing a neuronal map for US processing in Drosophila. Based on this work several experiments are contrivable to reach this ultimate goal in the fly. Taken together, the described similiarities between Drosophila and honeybee regarding the memory organisation in MBs and PNs and the proposed internal representation of the sugar reward suggest an evolutionarily conserved mechanism for appetitive olfactory learning in insects.}, subject = {Taufliege}, language = {en} } @phdthesis{Bertolucci2008, author = {Bertolucci, Franco}, title = {Operant and classical learning in Drosophila melanogaster: the ignorant gene (ign)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-33984}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {One of the major challenges in neuroscience is to understand the neuronal processes that underlie learning and memory. For example, what biochemical pathways underlie the coincidence detection between stimuli during classical conditioning, or between an action and its consequences during operant conditioning? In which neural substructures is this information stored? How similar are the pathways mediating these two types of associative learning and at which level do they diverge? The fly Drosophila melanogaster is an appropriate model organism to address these questions due to the availability of suitable learning paradigms and neurogenetic tools. It permits an extensive study of the functional role of the gene S6KII which in Drosophila had been found to be differentially involved in classical and operant conditioning (Bertolucci, 2002; Putz et al., 2004). Genomic rescue experiments showed that olfactory conditioning in the Tully machine, a paradigm for Pavlovian olfactory conditioning, depends on the presence of an intact S6KII gene. This rescue was successfully performed on both the null mutant and a partial deletion, suggesting that the removal of the phosphorylating unit of the kinase was the main cause of the functional defect. The GAL4/UAS system was used to achieve temporal and spatial control of S6KII expression. It was shown that expression of the kinase during the adult stage was essential for the rescue. This finding ruled out a developmental origin of the mutant learning phenotype. Furthermore, targeted spatial rescue of S6KII revealed a requirement in the mushroom bodies and excluded other brain structures like the median bundle, the antennal lobes and the central complex. This pattern is very similar to the one previously identified with the rutabaga mutant (Zars et al., 2000). Experiments with the double mutant rut, ign58-1 suggest that both rutabaga and S6KII operate in the same signalling pathway. Previous studies had already shown that deviating results from operant and classical conditioning point to different roles for S6KII in the two types of learning (Bertolucci, 2002; Putz, 2002). This conclusion was further strengthened by the defective performance of the transgenic lines in place learning and their normal behavior in olfactory conditioning. A novel type of learning experiment, called "idle experiment", was designed. It is based on the conditioning of the walking activity and represents a purely operant task, overcoming some of the limitations of the "standard" heat-box experiment, a place learning paradigm. The novel nature of the idle experiment allowed exploring "learned helplessness" in flies, unveiling astonishing similarities to more complex organisms such as rats, mice and humans. Learned helplessness in Drosophila is found only in females and is sensitive to antidepressants.}, subject = {Klassische Konditionierung}, language = {en} } @phdthesis{Masek2005, author = {Masek, Pavel}, title = {Odor intensity learning in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15546}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {It has been known for a long time that Drosophila can learn to discriminate not only between different odorants but also between different concentrations of the same odor. Olfactory associative learning has been described as a pairing between odorant and electric shock and since then, most of the experiments conducted in this respect have largely neglected the dual properties of odors: quality and intensity. For odorant-coupled short-term memory, a biochemical model has been proposed that mainly relies on the known cAMP signaling pathway. Mushroom bodies (MB) have been shown to be necessary and sufficient for this type of memory, and the MB-model of odor learning and short-term memory was established. Yet, theoretically, based on the MB-model, flies should not be able to learn concentrations if trained to the lower of the two concentrations in the test. In this thesis, I investigate the role of concentration-dependent learning, establishment of a concentration-dependent memory and their correlation to the standard two-odor learning as described by the MB-model. In order to highlight the difference between learning of quality and learning of intensity of the same odor I have tried to characterize the nature of the stimulus that is actually learned by the flies, leading to the conclusion that during the training flies learn all possible cues that are presented at the time. The type of the following test seems to govern the usage of the information available. This revealed a distinction between what flies learned and what is actually measured. Furthermore, I have shown that learning of concentration is associative and that it is symmetrical between high and low concentrations. I have also shown how the subjective quality perception of an odor changes with changing intensity, suggesting that one odor can have more than one scent. There is no proof that flies perceive a range of concentrations of one odorant as one (odor) quality. Flies display a certain level of concentration invariance that is limited and related to the particular concentration. Learning of concentration is relevant only to a limited range of concentrations within the boundaries of concentration invariance. Moreover, under certain conditions, two chemically distinct odorants could smell sufficiently similarly such, that they can be generalized between each other like if they would be of the same quality. Therefore, the abilities of the fly to identify the difference in quality or in intensity of the stimuli need to be distinguished. The way how the stimulus is analyzed and processed speaks in favor of a concept postulating the existence of two separated memories. To follow this concept, I have proposed a new form of memory called odor intensity memory (OIM), characterized it and compared it to other olfactory memories. OIM is independent of some members of the known cAMP signaling pathway and very likely forms the rutabaga-independent component of the standard two-odor memory. The rutabaga-dependent odor memory requires qualitatively different olfactory stimuli. OIM is revealed within the limits of concentration invariance where the memory test gives only sub-optimal performance for the concentration differences but discrimination of odor quality is not possible at all. Based on the available experimental tools, OIM seems to require the mushroom bodies the same as odor-quality memory but its properties are different. Flies can memorize the quality of several odorants at a given time but a newly formed memory of one odor interferes with the OIM stored before. In addition, the OIM lasts only 1 to 3 hours - much shorter than the odor-quality memory.}, subject = {Taufliege}, language = {en} } @phdthesis{Solanki2013, author = {Solanki, Narendra}, title = {Novelty choice in Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-103219}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {This study explores novelty choice, a behavioral paradigm for the investigation of visual pattern recognition and learning of the fly Drosophila melanogaster in the flight simulator. Pattern recognition in novelty choice differs significantly from pattern recognition studied by heat conditioning, although both paradigms use the same test. Out of the four pattern parameters that the flies can learn in heat conditioning, novelty choice can be shown for height (horizontal bars differing in height), size and vertical compactness but not for oblique bars oriented at +/- 45°. Upright and inverted Ts [differing in their centers of gravity (CsOG) by 13°] that have been extensively used for heat conditioning experiments, do not elicit novelty choice. In contrast, horizontal bars differing in their CsOG by 13° do elicit novelty choice; so do the Ts after increasing their CsOG difference from 13° to 23°. This indicates that in the Ts the heights of the CsOG are not the only pattern parameters that matter for the novelty choice behavior. The novelty choice and heat conditioning paradigms are further differentiated using the gene rutabaga (rut) coding for a type 1 adenylyl cyclase. This protein had been shown to be involved in memory formation in the heat conditioning paradigm. Novelty choice is not affected by mutations in the rut gene. This is in line with the finding that dopamine, which in olfactory learning is known to regulate Rutabaga via the dopamine receptor Dumb in the mushroom bodies, is dispensable for novelty choice. It is concluded that in novelty choice the Rut cAMP pathway is not involved. Novelty choice requires short term working memory, as has been described in spatial orientation during locomotion. The protein S6KII that has been shown to be involved in visual orientation memory in walking flies is found here to be also required for novelty choice. As in heat conditioning the central complex plays a major role in novelty choice. The S6KII mutant phenotype for height can be rescued in some subsets of the ring neurons of the ellipsoid body. In addition the finding that the ellipsoid body mutants ebo678 and eboKS263 also show a mutant phenotype for height confirm the importance of ellipsoid body for height novelty choice. Interestingly some neurons in the F1 layer of the fan-shaped body are necessary for height novelty choice. Furthermore, different novelty choice phenotypes for different pattern parameters are found with and without mushroom bodies. Mushroom bodies are required in novelty choice for size but they are dispensable for height and vertical compactness. This special circuit requirement for the size parameter in novelty choice is found using various means of interference with mushroom body function during development or adulthood.}, subject = {Taufliege}, language = {en} } @phdthesis{Pieger2017, author = {Pieger, Elisabeth}, title = {Metacognition and Disfluency - The Effects of Disfluency on Monitoring and Performance}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155362}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In this thesis, metacognition research is connected with fluency research. Thereby, the focus lies on how disfluency can be used to improve metacognitive monitoring (i.e., students` judgments during the learning process). Improving metacognitive monitoring is important in educational contexts in order to foster performance. Theories about metacognition and self-regulated learning suppose that monitoring affects control and performance. Accurate monitoring is necessary to initiate adequate control and better performance. However, previous research shows that students are often not able to accurately monitor their learning with meaningful text material. Inaccurate monitoring can result in inadequate control and low performance. One reason for inaccurate monitoring is that students use cues for their judgments that are not valid predictors of their performance. Because fluency might be such a cue, the first aim of this thesis is to investigate under which conditions fluency is used as a cue for judgments during the learning process. A fluent text is easy to process and, hence, it should be judged as easy to learn and as easy to remember. Inversely, a disfluent text is difficult to process, for example because of a disfluent font type (e.g., Mistral) or because of deleted letters (e.g., l_tt_rs). Hence, a disfluent text should be judged as difficult to learn and as difficult to remember. This assumption is confirmed when students learn with both fluent and disfluent material. When fluency is manipulated between persons, fluency seems to be less obvious as a cue for judgments. However, there are only a few studies that investigated the effects of fluency on judgments when fluency is manipulated between persons. Results from Experiment 1 (using deleted letters for disfluent text) and from Experiment 4 (using Mistral for disfluent text) in this thesis support the assumption that fluency is used as a cue for judgments in between-person designs. Thereby, however, the interplay with the type of judgment and the learning stage seems to matter. Another condition when fluency affects judgments was investigated in Experiment 2 and 3. The aim of these experiments was to investigate if disfluency leads to analytic monitoring and if analytic monitoring sustains for succeeding fluent material. If disfluency activates analytic monitoring that remains for succeeding fluent material, fluency should no longer be used as a cue for judgments. Results widely support this assumption for deleted letters (Experiment 2) as well as for the font type Mistral (Experiment 3). Thereby, again the interplay between the type of judgment and the learning stage matters. Besides the investigation of conditions when fluency is used as a cue for different types of judgments during the learning process, another aim of this thesis is to investigate if disfluency leads to accurate monitoring. Results from Experiment 3 and 4 support the assumption that Mistral can reduce overconfidence. This is the case when fluency is manipulated between persons or when students first learn with a fluent and then with a disfluent text. Dependent from the type of judgment and the learning stage, disfluency can lead even to underconfidence or to improved relative monitoring accuracy (Experiment 4). Improving monitoring accuracy is only useful when monitoring is implemented into better control and better performance. The effect of monitoring accuracy on control and performance was in the focus of Experiment 4. Results show that accurate monitoring does not result in improved control and performance. Thus, further research is required to develop interventions that do not only improve monitoring accuracy but that also help students to implement accurate monitoring into better control and performance. Summing up, the aim of this thesis is to investigate under which conditions fluency is used as a cue for judgments during the learning process, how disfluency can be used to improve monitoring accuracy, and if improved monitoring accuracy leads to improved performance. By connecting metacognition research and fluency research, further theories about metacognition and theories about fluency are specified. Results show that not only the type of fluency and the design, but also the type of judgment, the type of monitoring accuracy, and the learning stage should be taken into account. Understanding conditions that affect the interplay between metacognitive processes and performance as well as understanding the underlying mechanisms is necessary to enable systematic research and to apply findings into educational settings.}, subject = {Metakognition}, language = {en} } @phdthesis{Saumweber2011, author = {Saumweber, Timo}, title = {Mechanism of Learning and Plasticity in Larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66354}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {According to a changing environment it is crucial for animals to make experience and learn about it. Sensing, integrating and learning to associate different kinds of modalities enables animals to expect future events and to adjust behavior in the way, expected as the most profitable. Complex processes as memory formation and storage make it necessary to investigate learning and memory on different levels. In this context Drosophila melanogaster represents a powerful model organism. As the adult brain of the fly is still quite complex, I chose the third instar larva as model - the more simple the system, the easier to isolate single, fundamental principles of learning. In this thesis I addressed several kinds of questions on different mechanism of olfactory associative and synaptic plasiticity in Drosophila larvae. I focused on short-term memory throughout my thesis. First, investigating larval learning on behavioral level, I developed a one-odor paradigm for olfactory associative conditioning. This enables to estimate the learnability of single odors, reduces the complexity of the task and simplify analyses of "learning mutants". It further allows to balance learnability of odors for generalization-type experiments to describe the olfactory "coding space". Furthermore I could show that innate attractiveness and learnability can be dissociated and found finally that paired presentation of a given odor with reward increase performance, whereas unpaired presentations of these two stimuli decrease performance, indicating that larva are able to learn about the presence as well as about the absence of a reward. Second, on behavioral level, together with Thomas Niewalda and colleagues we focussed on salt processing in the context of choice, feeding and learning. Salt is required in several physiological processes, but can neither be synthesized nor stored. Various salt concentrations shift the valence from attraction to repulsion in reflexive behaviour. Interestingly, the reinforcing effect of salt in learning is shifted by more than one order of magnitude toward higher concentrations. Thus, the input pathways for gustatory behavior appear to be more sensitive than the ones supporting gustatory reinforcement, which is may be due to the dissociation of the reflexive and the reinforcing signalling pathways of salt. Third, in cooperation with Michael Schleyer we performed a series of behavioral gustatory, olfactory preference tests and larval learning experiments. Based on the available neuroanatomical and behavioral data we propose a model regarding chemosensory processing, odor-tastant memory trace formation and the 'decision' like process. It incorporates putative sites of interaction between olfactory and gustatory pathways during the establishment as well as behavioral expression of odor-tastant memory. We claim that innate olfactory behavior is responsive in nature and suggest that associative conditioned behavior is not a simple substitution like process, but driven more likely by the expectation of its outcome. Fourth, together with Birgit Michels and colleagues we investigated the cellular site and molecular mode of Synapsin, an evolutionarily conserved, presynaptic vesicular phosphoprotein and its action in larval learning. We confirmed a previously described learning impairment upon loss of Synapsin. We localized this Synapsin dependent memory trace in the mushroom bodies, a third-order "cortical" brain region, and could further show on molecular level, that Synapsin is as a downstream element of the AC-cAMP-PKA signalling cascade. This study provides a comprehensive chain of explanation from the molecular level to an associative behavioral change. Fifth, in the main part of my thesis I focused on molecular level on another synaptic protein, the Synapse associated protein of 47kDa (Sap47) and its role in larval behavior. As a member of a phylogenetically conserved gene family of hitherto unknown function. It is localized throughout the whole neuropil of larval brains and associated with presynaptic vesicles. Upon loss of Sap47 larvae exhibit normal sensory detection of the to-be-associated stimuli as well as normal motor performance and basic synaptic transmission. Interestingly, short-term plasticity is distorted and odorant-tastant associative learning ability is reduced. This defect in associative function could be rescued by restoring Sap47 expression. Therefore, this report is the first to suggest a function for Sap47 and specifically argues that Sap47 is required for synaptic as well as for behavioral plasticity in Drosophila larva. This prompts the question whether its homologs are required for synaptic and behavioral plasticity also in other species. Further in the last part of my thesis I contributed to the study of Ayse Yarali. Her central topic was the role of the White protein in punishment and relief learning in adult flies. Whereas stimuli that precede shock during training are subsequently avoided as predictors for punishment, stimuli that follow shock during training are later on approached, as they predict relief. Concerning the loss of White we report that pain-relief learning as well as punishment learning is changed. My contribution was a comparison between wild type and the white1118 mutant larvae in odor-reward learning. It turned out that a loss of White has no effect on larval odorant-tastant learning. This study, regarding painrelief learning provides the very first hints concerning the genetic determinants of this form of learning.}, subject = {Taufliege}, language = {en} } @phdthesis{Schwaerzel2003, author = {Schw{\"a}rzel, Martin}, title = {Localizing engrams of olfactory memories in Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-5065}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Zars and co-workers were able to localize an engram of aversive olfactory memory to the mushroom bodies of Drosophila (Zars et al., 2000). In this thesis, I followed up on this finding in two ways. Inspired by Zars et al. (2000), I first focused on the whether it would also be possible to localize memory extinction.While memory extinction is well established behaviorally, little is known about the underlying circuitry and molecular mechanisms. In extension to the findings by Zars et al (2000), I show that aversive olfactory memories remain localized to a subset of mushroom body Kenyon cells for up to 3 hours. Extinction localizes to the same set of Kenyon cells. This common localization suggests a model in which unreinforced presentations of a previously learned odorant intracellularly antagonizes the signaling cascades underlying memory formation. The second part also targets memory localization, but addresses appetitive memory. I show that memories for the same olfactory cue can be established through either sugar or electric shock reinforcement. Importantly, these memories localize to the same set of neurons within the mushroom body. Thus, the question becomes apparent how the same signal can be associated with different events. It is shown that two different monoamines are specificaly necessary for formation of either of these memories, dopamine in case of electric shock and octopamine in case of sugar memory, respectively. Taking the representation of the olfactory cue within the mushroom bodies into account, the data suggest that the two memory traces are located in the same Kenyon cells, but in separate subcellular domains, one modulated by dopamine, the other by octopamine. Taken together, this study takes two further steps in the search for the engram. (1) The result that in Drosophila olfactory learning several memories are organized within the same set of Kenyon cells is in contrast to the pessimism expressed by Lashley that is might not be possible to localize an engram. (2) Beyond localization, a possibible mechanism how several engrams about the same stimulus can be localized within the same neurons might be suggested by the models of subcellular organisation, as postulated in case of appetitive and aversive memory on the one hand and acquisition and extinction of aversive memory on the other hand.}, subject = {Taufliege}, language = {en} } @phdthesis{Schleyer2012, author = {Schleyer, Michael}, title = {Integrating past, present and future: mechanisms of a simple decision in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78923}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Is behaviour response or action? In this Thesis I study this question regarding a rather simple organism, the larva of the fruit fly Drosophila melanogaster. Despite its numerically simple brain and limited behavioural repertoire, it is nevertheless capable to accomplish surprisingly complex tasks. After association of an odour and a rewarding or punishing reinforcement signal, the learnt odour is able to retrieve the formed memory trace. However, the activated memory trace is not automatically turned into learned behaviour: Appetitive memory traces are behaviourally expressed only in absence of the rewarding tastant whereas aversive memory traces are behaviourally expressed in the presence of the punishing tastant. The 'decision' whether to behaviourally express a memory trace or not relies on a quantitive comparison between memory trace and current situation: only if the memory trace (after odour-sugar training) predicts a stronger sugar reward than currently present, animals show appetitive conditioned behaviour. Learned appetitive behaviour is best seen as active search for food - being pointless in the presence of (enough) food. Learned aversive behaviour, in turn, can be seen as escape from a punishment - being pointless in absence of punishment. Importantly, appetitive and aversive memory traces can be formed and retrieved independent from each other but also can, under appriate circumstances, summate to jointly organise conditioned behaviour. In contrast to learned behaviour, innate olfactory behaviour is not influenced by gustatory processing and vice versa. Thus, innate olfactory and gustatory behaviour is rather rigid and reflexive in nature, being executed almost regardless of other environmental cues. I suggest a behavioural circuit-model of chemosensory behaviour and the 'decision' process whether to behaviourally express a memory trace or not. This model reflects known components of the larval chemobehavioural circuit and provides clear hypotheses about the kinds of architecture to look for in the currently unknown parts of this circuit. The second chapter deals with gustatory perception and processing (especially of bitter substances). Quinine, the bitter tastant in tonic water and bitter lemon, is aversive for larvae, suppresses feeding behaviour and can act as aversive reinforcer in learning experiments. However, all three examined behaviours differ in their dose-effect dynamics, suggesting different molecular and cellular processing streams at some level. Innate choice behaviour, thought to be relatively reflexive and hard-wired, nevertheless can be influenced by the gustatory context. That is, attraction toward sweet tastants is decreased in presence of bitter tastants. The extent of this inhibitory effect depends on the concentration of both sweet and bitter tastant. Importantly, sweet tastants differ in their sensitivity to bitter interference, indicating a stimulus-specific mechanism. The molecular and cellular processes underlying the inhibitory effect of bitter tastants are unknown, but the behavioural results presented here provide a framework to further investigate interactions of gustatory processing streams.}, subject = {Lernen}, language = {en} } @phdthesis{Ewald2014, author = {Ewald, Heike}, title = {Influence of context and contingency awareness on fear conditioning - an investigation in virtual reality}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111226}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Fear conditioning is an efficient model of associative learning, which has greatly improved our knowledge of processes underlying the development and maintenance of pathological fear and anxiety. In a differential fear conditioning paradigm, one initially neutral stimulus (NS) is paired with an aversive event (unconditioned stimulus, US), whereas another stimulus does not have any consequences. After a few pairings the NS is associated with the US and consequently becomes a conditioned stimulus (CS+), which elicits a conditioned response (CR). The formation of explicit knowledge of the CS/US association during conditioning is referred to as contingency awareness. Findings about its role in fear conditioning are ambiguous. The development of a CR without contingency awareness has been shown in delay fear conditioning studies. One speaks of delay conditioning, when the US coterminates with or follows directly on the CS+. In trace conditioning, a temporal gap or "trace interval" lies between CS+ and US. According to existing evidence, trace conditioning is not possible on an implicit level and requires more cognitive resources than delay conditioning. The associations formed during fear conditioning are not exclusively associations between specific cues and aversive events. Contextual cues form the background milieu of the learning process and play an important role in both acquisition and the extinction of conditioned fear and anxiety. A common limitation in human fear conditioning studies is the lack of ecological validity, especially regarding contextual information. The use of Virtual Reality (VR) is a promising approach for creating a more complex environment which is close to a real life situation. I conducted three studies to examine cue and contextual fear conditioning with regard to the role of contingency awareness. For this purpose a VR paradigm was created, which allowed for exact manipulation of cues and contexts as well as timing of events. In all three experiments, participants were guided through one or more virtual rooms serving as contexts, in which two different lights served as CS and an electric stimulus as US. Fear potentiated startle (FPS) responses were measured as an indicator of implicit fear conditioning. To test whether participants had developed explicit awareness of the CS-US contingencies, subjective ratings were collected. The first study was designed as a pilot study to test the VR paradigm as well as the conditioning protocol. Additionally, I was interested in the effect of contingency awareness. Results provided evidence, that eye blink conditioning is possible in the virtual environment and that it does not depend on contingency awareness. Evaluative conditioning, as measured by subjective ratings, was only present in the group of participants who explicitly learned the association between CS and US. To examine acquisition and extinction of both fear associated cues and contexts, a novel cue-context generalization paradigm was applied in the second study. Besides the interplay of cues and contexts I was again interested in the effect of contingency awareness. Two different virtual offices served as fear and safety context, respectively. During acquisition, the CS+ was always followed by the US in the fear context. In the safety context, none of the lights had any consequences. During extinction, a additional (novel) context was introduced, no US was delivered in any of the contexts. Participants showed enhanced startle responses to the CS+ compared to the CS- in the fear context. Thus, discriminative learning took place regarding both cues and contexts during acquisition. This was confirmed by subjective ratings, although only for participants with explicit contingency awareness. Generalization of fear to the novel context after conditioning did not depend on awareness and was observable only on trend level. In a third experiment I looked at neuronal correlates involved in extinction of fear memory by means of functional magnetic resonance imaging (fMRI). Of particular interest were differences between extinction of delay and trace fear conditioning. I applied the paradigm tested in the pilot study and additionally manipulated timing of the stimuli: In the delay conditioning group (DCG) the US was administered with offset of one light (CS+), in the trace conditioning group (TCG) the US was presented 4s after CS+ offset. Most importantly, prefrontal activation differed between the two groups. In line with existing evidence, the ventromedial prefrontal cortex (vmPFC) was activated in the DCG. In the TCG I found activation of the dorsolateral prefrontal cortex (dlPFC), which might be associated with modulation of working memory processes necessary for bridging the trace interval and holding information in short term memory. Taken together, virtual reality proved to be an elegant tool for examining human fear conditioning in complex environments, and especially for manipulating contextual information. Results indicate that explicit knowledge of contingencies is necessary for attitude formation in fear conditioning, but not for a CR on an implicit level as measured by FPS responses. They provide evidence for a two level account of fear conditioning. Discriminative learning was successful regarding both cues and contexts. Imaging results speak for different extinction processes in delay and trace conditioning, hinting that higher working memory contribution is required for trace than for delay conditioning.}, subject = {Klassische Konditionierung}, language = {en} } @phdthesis{Lyutova2019, author = {Lyutova, Radostina}, title = {Functional dissection of recurrent feedback signaling within the mushroom body network of the Drosophila larva}, doi = {10.25972/OPUS-18728}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187281}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Behavioral adaptation to environmental changes is crucial for animals' survival. The prediction of the outcome of one owns action, like finding reward or avoiding punishment, requires recollection of past experiences and comparison with current situation, and adjustment of behavioral responses. The process of memory acquisition is called learning, and the Drosophila larva came up to be an excellent model organism for studying the neural mechanisms of memory formation. In Drosophila, associative memories are formed, stored and expressed in the mushroom bodies. In the last years, great progress has been made in uncovering the anatomical architecture of these brain structures, however there is still a lack of knowledge about the functional connectivity. Dopamine plays essential roles in learning processes, as dopaminergic neurons mediate information about the presence of rewarding and punishing stimuli to the mushroom bodies. In the following work, the function of a newly identified anatomical connection from the mushroom bodies to rewarding dopaminergic neurons was dissected. A recurrent feedback signaling within the neuronal network was analyzed by simultaneous genetic manipulation of the mushroom body Kenyon cells and dopaminergic neurons from the primary protocerebral anterior (pPAM) cluster, and learning assays were performed in order to unravel the impact of the Kenyon cells-to-pPAM neurons feedback loop on larval memory formation. In a substitution learning assay, simultaneous odor exposure paired with optogenetic activation of Kenyon cells in fruit fly larvae in absence of a rewarding stimulus resulted in formation of an appetitive memory, whereas no learning behavior was observed when pPAM neurons were ablated in addition to the KC activation. I argue that the activation of Kenyon cells may induce an internal signal that mimics reward exposure by feedback activation of the rewarding dopaminergic neurons. My data further suggests that the Kenyon cells-to-pPAM communication relies on peptidergic signaling via short neuropeptide F and underlies memory stabilization.}, subject = {Lernen}, language = {en} } @phdthesis{Klinke2022, author = {Klinke, Christopher Matthias}, title = {Experimental investigation of the effect of distal stress induction on threat conditioning in humans}, doi = {10.25972/OPUS-22556}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-225562}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Stress constitutes a major risk factor for the development of psychiatric disorders, such as PTSD and anxiety disorders, by shifting the brain into a state of sensitization and makes it more vulnerable when being exposed to further aversive events. This was experimentally in-vestigated in rodents by examining the effect of a distal stress induction on threat conditioning, where stress impaired extinction learning and caused spontaneous recovery. However, this effect has never been experimentally investigated in humans, so far. Thus, the aim of this dissertation was to investigate the effect of distal stress on threat conditioning in humans. Therefore, two subsequent studies were conducted. For both studies, the threat conditioning paradigm comprised threat acquisition, extinction learning, and re-extinction. In the threat acquisition phase, two geometrical shapes were used as conditioned stimulus (CS), from which one (CS+) was paired with a painful electric stimulus (unconditioned stimulus, US), but not the other one (CS-). During extinction learning 24 h later and re-extinction seventeen days later, CSs were again presented but without any US delivery. In Study 1, 69 participants underwent either a stress (socially evaluated cold pressor test; SECPT) or sham protocol 10 days prior to threat conditioning. Furthermore, context effects were examined by placing the stress protocol in the same context (context-A stress, and sham group) or a different context (context-B stress group) than conditioning. Results revealed that the context-A, but not context-B, stress group displayed impaired safety learning (i.e. potenti-ation towards CS-) for startle response during threat acquisition. Moreover, the same stress group showed impaired threat extinction, evident in sustained CS discrimination in valence and arousal ratings during extinction learning, and memory recall. In sum, distal stress on the one hand impaired safety learning during threat conditioning on a level of startle response. On the other hand, stress impaired threat extinction on a level of ratings. Noteworthy, the effect of distal stress was only found when the stressor was placed in the same context as later threat learning. Hence, suggesting that the combination of stressor and stressor-associated context exerted the effect on threat extinction. In Study 2, it was examined if distal stress induction could also have an impact on threat and extinction processes without the necessity of context association. Therefore, the same stress (n = 45) or sham protocol (n = 44) as in Study 1 was conducted in a different context than and 24 h prior to a threat conditioning paradigm. Similar to Study 1, weakened extinction learning was found in fear ratings for the stress (vs. sham) group, which was indicated by persistent CS+/CS- differentiation after the first block of extinction trials. Alterations in safety learning towards the CS- during threat acquisition were only supported by significant correlations between stress measures on the stress day and conditioned startle response of the CS- during acquisition. Taken together, in two subsequent studies this dissertation provided first evidence of impaired threat extinction after distal stress induction in humans. Furthermore, impairments in safety learning, as can be observed in PTSD, were additionally demonstrated. Interestingly, the effects were boosted and more profound when associating the stressor to the later learning context. These results have clinical implications as they can be translated to the notion that prior stress exposure makes an individual more vulnerable for later aversive events.}, subject = {Stress}, language = {en} } @phdthesis{Chen2012, author = {Chen, Yi-chun}, title = {Experimental access to the content of an olfactory memory trace in larval Drosophila}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83705}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Animals need to evaluate their experiences in order to cope with new situations they encounter. This requires the ability of learning and memory. Drosophila melanogaster lends itself as an animal model for such research because elaborate genetic techniques are available. Drosphila larva even saves cellular redundancy in parts of its nervous system. My Thesis has two parts dealing with associative olfactory learning in larval Drosophila. Firstly, I tackle the question of odour processing in respect to odour quality and intensity. Secondly, by focusing on the evolutionarily conserved presynaptic protein Synapsin, olfactory learning on the cellular and molecular level is investigated. Part I.1. provides a behaviour-based estimate of odour similarity in larval Drosophila by using four recognition-type experiments to result in a combined, task-independent estimate of perceived difference between odour-pairs. A further comparison of these combined perceived differences to published calculations of physico-chemical difference reveals a weak correlation between perceptual and physico-chemical similarity. Part I.2. focuses on how odour intensity is interpreted in the process of olfactory learning in larval Drosophila. First, the dose-effect curves of learnability across odour intensities are described in order to choose odour intensities such that larvae are trained at intermediate odour intensity, but tested for retention either with that trained intermediate odour intensity, or with respectively HIGHer or LOWer intensities. A specificity of retention for the trained intensity is observed for all the odours used. Such intensity specificity of learning adds to appreciate the richness in 'content' of olfactory memory traces, and to define the demands on computational models of associative olfactory memory trace formation. In part II.1. of the thesis, the cellular site and molecular mode of Synapsin function is investigated- an evolutionarily conserved, presynaptic vesicular phosphoprotein. On the cellular level, the study shows a Synapsin-dependent memory trace in the mushroom bodies, a third-order "cortical" brain region of the insects; on the molecular level, Synapsin engages as a downstream element of the AC-cAMP-PKA signalling cascade.}, subject = {Taufliege}, language = {en} } @phdthesis{Andreatta2010, author = {Andreatta, Marta}, title = {Emotional reactions after event learning : a Rift between Implicit and Explicit Conditioned Valence in Humans Pain Relief Lerning}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-55715}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Organismen vermeiden Gefahren und streben nach Belohnungen, um zu {\"u}berleben. Klassische Konditionierung ist ein einfaches Model, das erkl{\"a}rt, wie Tiere und Menschen Ereignisse in Verbindung bringen. Dieses Lernen erm{\"o}glicht Lebewesen Gefahr oder Belohnung direkt vorherzusehen. Normalerweise besteht das Konditionierungsparadigma aus der Pr{\"a}sentation eines neutralen Stimulus zusammen mit einem biologisch bedeutsamen Event (der unkonditionierte Stimulus - US). Aufgrund dieser Assoziation erwirbt der neutrale Stimulus affektive Eigenschaften und wird dann konditionierter Stimulus (CS+) genannt. Wenn der CS+ mit Schmerz w{\"a}hrend der Trainingsphase assoziiert wird, leitet er eine defensive Reaktion, wie z.B. Vermeidung ein. Wenn der CS+ mit einer Belohnung assoziiert wird, leitet er eine appetitive Reaktion, wie z.B. Ann{\"a}herungsreaktionen ein. Interessanterweise haben Tierstudien gezeigt, dass ein konditionierter Stimulus vermieden wurde, wenn er einem aversiven US in der Trainingsphase vorausgegangen war (CS+US; Vorw{\"a}rtskonditionierung). Das deutet darauf hin, dass der CS+ aversive Eigenschaften erlangt hat. Jedoch f{\"u}hrte ein konditionierter Stimulus zu einer Ann{\"a}herung, wenn er in der Trainingsphase auf einen aversiven US folgt (US CS+; R{\"u}ckw{\"a}rtskonditionierung). Das deutet darauf hin, dass der CS+ appetitive Eigenschaften erlangt hat. Kann das Event Timing sowohl aversive als auch appetitive konditionierten Reaktionen auch bei Menschen ausl{\"o}sen, die zu Kognitionen bez{\"u}glich der Assoziationen f{\"a}hig sind? Um diese Fragestellung zu beantworten, wurden vier Studien durchgef{\"u}hrt. Die Studien hatten den gleichen Ablauf, variiert wurde nur die Zeit zwischen CS+ und US (das Interstimulusintervall - ISI - ist als das Zeitintervall zwischen dem Onset des CS+ und dem Onset des US definiert). W{\"a}hrend der Akquisitionsphase (Konditionierung) wurden, zwei einfache geometrische Figuren als konditionierte Stimuli dargeboten. Eine geometrische Figur (der CS+) war immer mit einem leichten schmerzhaften elektrischen Reiz (der aversive US) assoziiert; die andere Figur (der CS-) war nie mit dem elektrischen Reiz assoziiert. In einem between-subjects Design wurde entweder eine Vorw{\"a}rtskonditionierung oder eine R{\"u}ckw{\"a}rtskonditionierung durchgef{\"u}hrt. W{\"a}hrend der Testsphase (Extinktion) wurden CS+ und CS- pr{\"a}sentiert sowie zus{\"a}tzlich eine neue neutrale geometrische Figur pr{\"a}sentiert, die als Kontrollstimulus fungierte; der US wurde in dieser Phase nie dargeboten. Vor und nach der Konditionierung wurden die Probanden sowohl bez{\"u}glich der Valenz (bzw. Unangenehmheit und Angenehmheit) als auch der Erregung (bzw. Ruhe und Aufregung) hinsichtlich der geometrischen Figuren befragt. In der ersten Studie wurde der Schreckreflex (Startle Reflex) als Maß f{\"u}r die implizite Valenz der Stimuli gemessen. Der Schreckreflex ist eine defensive Urreaktion, die aus einem Muskelzucken des Gesichts und des K{\"o}rpers besteht. Dieser Reflex ist durch pl{\"o}tzliche und intensive visuelle, taktile oder akustische Reize evoziert. Einerseits war die Amplitude des Startles bei der Anwesenheit des vorw{\"a}rts CS+ potenziert und das deutet daraufhin, dass der CS+ eine implizite negative Valenz nach der Vorw{\"a}rtskonditionierung erworben hat. Anderseits war die Amplitude des Startles bei der Anwesenheit des r{\"u}ckw{\"a}rts CS+ abgeschw{\"a}cht, was darauf hin deutet, dass der CS+ nach der R{\"u}ckw{\"a}rtskonditionierung eine implizite positive Valenz erworben hat. In der zweiten Studie wurde die oxygenierte Bloodsresponse (BOLD) mit funktioneller Magnetresonanztomographie (fMRI) erhoben, um neuronale Korrelate des Event-Timings zu erfassen. Eine st{\"a}rkere Aktivierung wurde in der Amygdala in Erwiderung auf den vorw{\"a}rts CS+ und im Striatum in Erwiderung auf den r{\"u}ckw{\"a}rts CS+ gefunden. Zum Einen entspricht dies einer Aktivierung des Defensive Motivational Systems, da die Amygdala eine wichtige Rolle beim Angstexpression und Angstakquisition hat. Deshalb wurde der vorw{\"a}rts CS+ als aversiv betrachtet. Zum Anderen entspricht dies einer Aktivierung des Appetitive Motivational System, da das Striatum eine wichtige Rolle bei Belohnung hat. Deshalb wurde der r{\"u}ckw{\"a}rts CS+ als appetitiv betrachtet. In der dritten Studie wurden Aufmerksamkeitsprozesse beim Event-Timing n{\"a}her beleuchtet, indem steady-state visuelle evozierte Potentiale (ssVEP) gemessen wurden. Sowohl der vorw{\"a}rts CS+ als auch der r{\"u}ckw{\"a}rts CS+ zog Aufmerksamkeit auf sich. Dennoch war die Amplitude der ssVEP großer w{\"a}hrend der letzen Sekunden des vorw{\"a}rts CS+, d.h. direkt vor dem aversiven US. Die Amplitude der ssVEP war aber gr{\"o}ßer w{\"a}hrend der ersten Sekunden des r{\"u}ckw{\"a}rts CS+, d.h. kurz nach dem aversiven US. Vermutlich wird die Aufmerksamkeit auf den hinsichtlich des aversiven US informativsten Teil des CS+. Alle Probanden der drei Studien haben den vorw{\"a}rts CS+ und den r{\"u}ckw{\"a}rts CS+ negativer und erregender als den Kontrollstimulus beurteilt. Daher werden die expliziten Ratings vom Event-Timing nicht beeinflusst. Bemerkenswert ist die Dissoziation zwischen den subjektiven Ratings und den physiologischen Reaktionen. Nach der Dual-Prozess Theorie werden die Verhaltensreaktionen des Menschen von zwei Systemen determiniert: einem impulsiv impliziten System, das auf assoziativen Prinzipien beruht, und einem reflektiv expliziten System, das auf der Kenntnis {\"u}ber Fakten und Werte basiert. Wichtig ist, dass die zwei Systeme auf synergetische oder antagonistische Weise agieren k{\"o}nnen. Folglich k{\"o}nnte es sein, dass das impulsive und das reflektive System nach der R{\"u}ckw{\"a}rtskonditionierung antagonistisch arbeiten. Zusammen deuten die vorliegenden Studien daraufhin, dass Event-Timing eine Bestrafung in eine Belohnung umwandeln kann, aber die Probanden erleben den Stimulus assoziiert mit einem aversiven Event als negativ. Diese Dissoziation k{\"o}nnte zum Verst{\"a}ndnis der psychiatrischen St{\"o}rungen wie z.B. Angstst{\"o}rungen oder Drogenabh{\"a}ngigkeit beitragen.}, subject = {Gef{\"u}hl}, language = {en} } @phdthesis{Eschbach2011, author = {Eschbach, Claire}, title = {Classical and operant learning in the larvae of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70583}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {In dieser Doktorarbeit studiere ich einige psychologische Aspekte im Verhalten der Drosophila, insbesondere von Drosophila Larven. Nach einer Einleitung, in der ich den wissenschaftlichen Kontext darstelle und die Mechanismen der olfaktorischen Wahrnehmung sowie des klassichen und operanten Lernens beschreibe, stelle ich die verschiedenen Experimente meiner Doktorarbeit vor. Wahrnehmung Das zweite Kapitel behandelt die Art, in der adulte Drosophila zwischen Einzeld{\"u}ften und Duftgemischen generaliseren. Ich habe gefunden, daß die Fliegen eine Mischung aus zwei D{\"u}ften als gleich verschieden von ihren beiden Elementen wahrnehmen; und daß die Intensit{\"a}t sowie die chemisch-physikalische Natur der Elemente das Ausmass der Generalisierung zwischen der Mischung und ihren beiden Elementen beeinflusst. Diese Entdeckungen sollten f{\"u}r die weitere Forschung anregend sein, wie zum Beispiel zum functional imaging. Ged{\"a}chtnis Das dritte Kapitel stellt die Etablierung eines neuen Protokolls zur klassischen Konditionierung bei Drosophila Larven dar. Es handelt sich um Experimente, bei denen ein Duft mit einer mechanischen St{\"o}rung als Strafreiz verkn{\"u}pft wird. Das Protokoll wird einen Vergleich zwischen zwei Arten vom aversiven Ged{\"a}chtnissen (Geschmack vs. mechanische St{\"o}rung als Strafreize) erm{\"o}glichen, einschliesslich eines Vergleiches ihrer neurogenetischen Grundlagen; zudem kann nun geforscht werden, ob die jeweiligen Ged{\"a}chtnisse spezifisch f{\"u}r die Art des verwendeten Strafreizes sind. Selbstgestaltung Das vierte Kapitel umfasst unsere Versuche, operantes Ged{\"a}chtnis bei Drosophila Larven zu beobachten. Zumindest f{\"u}r die unmittelbar ersten Momente des Tests konnte ich zeigen, dass die Larven ihr Verhalten entsprechend dem Training ausrichten. Dieses Ged{\"a}chtnis scheint jedoch im Laufe des Tests schnell zu verschwinden. Es ist daher geraten, diese Ergebnisse {\"u}ber operantes Lernen zu wiederholen, eventuell das experimentelle Protokoll zu verbessern, um so eine systematische Analyse der Bedingungen und Mechanismen f{\"u}r das operante Lernen bei der Drosophila Larve zu erlauben. Im f{\"u}nften Kapitel verwende ich die im Rahmen des vierten Kapitels entwickelten Methoden f{\"u}r eine Analyse der Fortbewegung der Larven. Ich habe insbesondere die Wirkung des pflanzlichen ‚cognitive enhancers' Rhodiola rosea untersucht, sowie die Auswirkungen von Mutationen in den Genen, welche f{\"u}r Synapsin und SAP47 kodieren; schliesslich habe ich getestet, ob die Geschmacksqualit{\"a}t der Testsituation lokomotorische Parameter ver{\"a}ndert. Diese Dissertation erbringt also eine Reihe neuer Aspekte zur Psychologie der Drosophila und wird hoffentlich in diesem Bereich der Forschung neue Wege {\"o}ffnen.}, subject = {Lernen}, language = {en} } @phdthesis{Scholl2015, author = {Scholl, Christina}, title = {Cellular and molecular mechanisms contributing to behavioral transitions and learning in the honeybee}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115527}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The honeybee Apis mellifera is a social insect well known for its complex behavior and the ability to learn tasks associated with central place foraging, such as visual navigation or to learn and remember odor-reward associations. Although its brain is smaller than 1mm² with only 8.2 x 105 neurons compared to ~ 20 x 109 in humans, bees still show amazing social, cognitive and learning skills. They express an age - related division of labor with nurse bees staying inside the hive and performing tasks like caring for the brood or cleaning, and foragers who collect food and water outside the hive. This challenges foragers with new responsibilities like sophisticated navigation skills to find and remember food sources, drastic changes in the sensory environment and to communicate new information to other bees. Associated with this plasticity of the behavior, the brain and especially the mushroom bodies (MBs) - sensory integration and association centers involved in learning and memory formation - undergo massive structural and functional neuronal alterations. Related to this background my thesis on one hand focuses on neuronal plasticity and underlying molecular mechanisms in the MBs that accompany the nurse - forager transition. In the first part I investigated an endogenous and an internal factor that may contribute to the nurse - forager phenotype plasticity and the correlating changes in neuronal network in the MBs: sensory exposure (light) and juvenile hormone (JH). Young bees were precociously exposed to light and subsequently synaptic complexes (microglomeruli, MG) in the MBs or respectively hemolymph juvenile hormone (JH) levels were quantified. The results show that light input indeed triggered a significant decrease in MG density, and mass spectrometry JH detection revealed an increase in JH titer. Interestingly light stimulation in young bees (presumably nurse bees) triggered changes in MG density and JH levels comparable to natural foragers. This indicates that both sensory stimuli as well as the endocrine system may play a part in preparing bees for the behavioral transition to foraging. Considering a connection between the JH levels and synaptic remodeling I used gene knockdown to disturb JH pathways and artificially increase the JH level. Even though the knockdown was successful, the results show that MG densities remained unchanged, showing no direct effect of JH on synaptic restructuring. To find a potential mediator of structural synaptic plasticity I focused on the calcium-calmodulin-dependent protein kinase II (CaMKII) in the second part of my thesis. CaMKII is a protein known to be involved in neuronal and behavioral plasticity and also plays an important part in structural plasticity reorganizing synapses. Therefore it is an interesting candidate for molecular mechanisms underlying MG reorganization in the MBs in the honeybee. Corresponding to the high abundance of CaMKII in the learning center in vertebrates (hippocampus), CaMKII was shown to be enriched in the MBs of the honeybee. Here I first investigated the function of CaMKII in learning and memory formation as from vertebrate work CaMKII is known to be associated with the strengthening of synaptic connections inducing long term potentiation and memory formation. The experimental approach included manipulating CaMKII function using 2 different inhibitors and a specific siRNA to create a CaMKII knockdown phenotype. Afterwards bees were subjected to classical olfactory conditioning which is known to induce stable long-term memory. All bees showed normal learning curves and an intact memory acquisition, short-term and mid-term memory (1 hour retention). However, in all cases long-term memory formation was significantly disrupted (24 and 72 hour retention). These results suggests the necessity of functional CaMKII in the MBs for the induction of both early and late phases of long-term memory in honeybees. The neuronal and molecular bases underlying long-term memory and the resulting plasticity in behavior is key to understanding higher brain function and phenotype plasticity. In this context CaMKII may be an important mediator inducing structural synaptic and neuronal changes in the MB synaptic network.}, subject = {Biene}, language = {en} } @phdthesis{Oberdoerfer2021, author = {Oberd{\"o}rfer, Sebastian}, title = {Better Learning with Gaming: Knowledge Encoding and Knowledge Learning Using Gamification}, doi = {10.25972/OPUS-21970}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219707}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Computer games are highly immersive, engaging, and motivating learning environments. By providing a tutorial at the start of a new game, players learn the basics of the game's underlying principles as well as practice how to successfully play the game. During the actual gameplay, players repetitively apply this knowledge, thus improving it due to repetition. Computer games also challenge players with a constant stream of new challenges which increase in difficulty over time. As a result, computer games even require players to transfer their knowledge to master these new challenges. A computer game consists of several game mechanics. Game mechanics are the rules of a computer game and encode the game's underlying principles. They create the virtual environments, generate a game's challenges and allow players to interact with the game. Game mechanics also can encode real world knowledge. This knowledge may be acquired by players via gameplay. However, the actual process of knowledge encoding and knowledge learning using game mechanics has not been thoroughly defined, yet. This thesis therefore proposes a theoretical model to define the knowledge learning using game mechanics: the Gamified Knowledge Encoding. The model is applied to design a serious game for affine transformations, i.e., GEtiT, and to predict the learning outcome of playing a computer game that encodes orbital mechanics in its game mechanics, i.e., Kerbal Space Program. To assess the effects of different visualization technologies on the overall learning outcome, GEtiT visualizes the gameplay in desktop-3D and immersive virtual reality. The model's applicability for effective game design as well as GEtiT's overall design are evaluated in a usability study. The learning outcome of playing GEtiT and Kerbal Space Program is assessed in four additional user studies. The studies' results validate the use of the Gamified Knowledge Encoding for the purpose of developing effective serious games and to predict the learning outcome of existing serious games. GEtiT and Kerbal Space Program yield a similar training effect but a higher motivation to tackle the assignments in comparison to a traditional learning method. In conclusion, this thesis expands the understanding of using game mechanics for an effective learning of knowledge. The presented results are of high importance for researches, educators, and developers as they also provide guidelines for the development of effective serious games.}, subject = {Serious game}, language = {en} } @phdthesis{Yarali2008, author = {Yarali, Ayse}, title = {Aspects of predictive learning in the fruit fly}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28741}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Past experience contributes to behavioural organization mainly via learning: Animals learn otherwise ordinary cues as predictors for biologically significant events. This thesis studies such predictive, associative learning, using the fruit fly Drosophila melanogaster. I ask two main questions, which complement each other: One deals with the processing of those cues that are to be learned as predictors for an important event; the other one deals with the processing of the important event itself, which is to be predicted. Do fruit flies learn about combinations of olfactory and visual cues? I probe larval as well as adult fruit flies for the learning about combinations of olfactory and visual cues, using a so called 'biconditional discrimination' task: During training, one odour is paired with reinforcement only in light, but not in darkness; the other odour in turn is reinforced only in darkness, but not in light. Thus, neither the odours nor the visual conditions alone predict reinforcement, only combinations of both do. I find no evidence that either larval or adult fruit flies were to solve such task, speaking against a cross-talk between olfactory and visual modalities. Previous studies however suggest such cross-talk. To reconcile these results, I suggest classifying different kinds of interaction between sensory modalities, according to their site along the sensory-motor continuum: I consider an interaction 'truly' cross-modal, if it is between the specific features of the stimuli. I consider an interaction 'amodal' if it instead engages the behavioural tendencies or 'values' elicited by each stimulus. Such reasoning brings me to conclude that different behavioural tasks require different kinds of interaction between sensory modalities; whether a given kind of interaction will be found depends on the neuronal infrastructure, which is a function of the species and the developmental stage. Predictive learning of pain-relief in fruit flies Fruit flies build two opposing kinds of memory, based on an experience with electric shock: Those odours that precede shock during training are learned as predictors for punishment and are subsequently avoided; those odours that follow shock during training on the other hand are learned as signals for relief and are subsequently approached. I focus on such relief learning. I start with a detailed parametric analysis of relief learning, testing for reproducibility as well as effects of gender, repetition of training, odour identity, odour concentration and shock intensity. I also characterize how relief memories, once formed, decay. In addition, concerning the psychological mechanisms of relief learning, first, I show that relief learning establishes genuinely associative conditioned approach behaviour and second, I report that it is most likely not mediated by context associations. These results enable the following neurobiological analysis of relief learning; further, they will form in the future the basis for a mathematical model; finally, they will guide the researchers aiming at uncovering relief learning in other experimental systems. Next, I embark upon neurogenetic analysis of relief learning. First, I report that fruit flies mutant for the so called white gene build overall more 'negative' memories about an experience with electric shock. That is, in the white mutants, learning about the painful onset of shock is enhanced, whereas learning about the relieving offset of shock is diminished. As they are coherently affected, these two kinds of learning should be in a balance. The molecular mechanism of the effect of white on this balance remains unresolved. Finally, as a first step towards a neuronal circuit analysis of relief learning, I compare it to reward learning and punishment learning. I find that relief learning is distinct from both in terms of the requirement for biogenic amine signaling: Reward and punishment are respectively signalled by octopamine and dopamine, for relief learning, either of these seem dispensible. Further, I find no evidence for roles for two other biogenic amines, tyramine and serotonin in relief learning. Based on these findings I give directions for further research.}, subject = {Lernen}, language = {en} } @phdthesis{Brembs2000, author = {Brembs, Bj{\"o}rn}, title = {An Analysis of Associative Learning in Drosophila at the Flight Simulator}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1039}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Most natural learning situations are of a complex nature and consist of a tight conjunction of the animal's behavior (B) with the perceived stimuli. According to the behavior of the animal in response to these stimuli, they are classified as being either biologically neutral (conditioned stimuli, CS) or important (unconditioned stimuli, US or reinforcer). A typical learning situation is thus identified by a three term contingency of B, CS and US. A functional characterization of the single associations during conditioning in such a three term contingency has so far hardly been possible. Therefore, the operational distinction between classical conditioning as a behavior-independent learning process (CS-US associations) and operant conditioning as essentially behavior-dependent learning (B-US associations) has proven very valuable. However, most learning experiments described so far have not been successful in fully separating operant from classical conditioning into single-association tasks. The Drosophila flight simulator in which the relevant behavior is a single motor variable (yaw torque), allows for the first time to completely separate the operant (B-US, B-CS) and the classical (CS-US) components of a complex learning situation and to examine their interactions. In this thesis the contributions of the single associations (CS-US, B-US and B-CS) to memory formation are studied. Moreover, for the first time a particularly prominent single association (CS-US) is characterized extensively in a three term contingency. A yoked control shows that classical (CS-US) pattern learning requires more training than operant pattern learning. Additionally, it can be demonstrated that an operantly trained stimulus can be successfully transferred from the behavior used during training to a new behavior in a subsequent test phase. This result shows unambiguously that during operant conditioning classical (CS-US) associations can be formed. In an extension to this insight, it emerges that such a classical association blocks the formation of an operant association, which would have been formed without the operant control of the learned stimuli. Instead the operant component seems to develop less markedly and is probably merged into a complex three-way association. This three-way association could either be implemented as a sequential B-CS-US or as a hierarchical (B-CS)-US association. The comparison of a simple classical (CS-US) with a composite operant (B, CS and US) learning situation and of a simple operant (B-US) with another composite operant (B, CS and US) learning situation, suggests a hierarchy of predictors of reinforcement. Operant behavior occurring during composite operant conditioning is hardly conditioned at all. The associability of classical stimuli that bear no relation to the behavior of the animal is of an intermediate value, as is operant behavior alone. Stimuli that are controlled by operant behavior accrue associative strength most easily. If several stimuli are available as potential predictors, again the question arises which CS-US associations are formed? A number of different studies in vertebrates yielded amazingly congruent results. These results inspired to examine and compare the properties of the CS-US association in a complex learning situation at the flight simulator with these vertebrate results. It is shown for the first time that Drosophila can learn compound stimuli and recall the individual components independently and in similar proportions. The attempt to obtain second-order conditioning with these stimuli, yielded a relatively small effect. In comparison with vertebrate data, blocking and sensory preconditioning experiments produced conforming as well as dissenting results. While no blocking could be found, a sound sensory preconditioning effect was obtained. Possible reasons for the failure to find blocking are discussed and further experiments are suggested. The sensory preconditioning effect found in this study is revealed using simultaneous stimulus presentation and depends on the amount of preconditioning. It is argued that this effect is a case of 'incidental learning', where two stimuli are associated without the need of reinforcement. Finally, the implications of the results obtained in this study for the general understanding of memory formation in complex learning situations are discussed.}, subject = {Taufliege}, language = {en} }