@article{ThieleRichterHilger2023, author = {Thiele, Jonas A. and Richter, Aylin and Hilger, Kirsten}, title = {Multimodal brain signal complexity predicts human intelligence}, series = {eNeuro}, volume = {10}, journal = {eNeuro}, number = {2}, doi = {10.1523/ENEURO.0345-22.2022}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312949}, year = {2023}, abstract = {Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven's Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (r āˆ¼ 0.20) and vary across different spatial and temporal scales. Specifically, higher intelligence scores were associated with lower complexity in local aspects of neural processing, and less activity in task-negative brain regions belonging to the default-mode network. Finally, we combined multiple measures of brain signal complexity to show that individual intelligence scores can be significantly predicted with a multimodal model within the sample (10-fold cross-validation) as well as in an independent sample (external replication, Nā€‰=ā€‰57). In sum, our results highlight the temporal and spatial dependency of associations between intelligence and intrinsic brain dynamics, proposing multimodal approaches as promising means for future neuroscientific research on complex human traits.}, language = {en} } @article{HilgerHaegeZedleretal.2023, author = {Hilger, Kirsten and H{\"a}ge, Anne-Sophie and Zedler, Christina and Jost, Michael and Pauli, Paul}, title = {Virtual reality to understand pain-associated approach behaviour: a proof-of-concept study}, series = {Scientific Reports}, volume = {13}, journal = {Scientific Reports}, doi = {10.1038/s41598-023-40789-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-357817}, year = {2023}, abstract = {Pain-associated approach and avoidance behaviours are critically involved in the development and maintenance of chronic pain. Empirical research suggests a key role of operant learning mechanisms, and first experimental paradigms were developed for their investigation within a controlled laboratory setting. We introduce a new Virtual Reality paradigm to the study of pain-related behaviour and investigate pain experiences on multiple dimensions. The paradigm evaluates the effects of three-tiered heat-pain stimuli applied contingent versus non-contingent with three types of arm movements in naturalistic virtual sceneries. Behaviour, self-reported pain-related fear, pain expectancy and electrodermal activity were assessed in 42 healthy participants during an acquisition phase (contingent movement-pain association) and a modification phase (no contingent movement-pain association). Pain-associated approach behaviour, as measured by arm movements followed by a severe heat stimulus, quickly decreased in-line with the arm movement-pain contingency. Slower effects were observed in fear of movement-related pain and pain expectancy ratings. During the subsequent modification phase, the removal of the pain contingencies modified all three indices. In both phases, skin conductance responses resemble the pattern observed for approach behaviour, while skin conductance levels equal the pattern observed for the self-ratings. Our findings highlight a fast reduction in approach behaviour in the face of acute pain and inform about accompanying psychological and physiological processes. We discuss strength and limitations of our paradigm for future investigations with the ultimate goal of gaining a comprehensive understanding of the mechanisms involved in chronic pain development, maintenance, and its therapy.}, language = {en} } @article{KiserGromerPaulietal.2022, author = {Kiser, Dominik P. and Gromer, Daniel and Pauli, Paul and Hilger, Kirsten}, title = {A virtual reality social conditioned place preference paradigm for humans: Does trait social anxiety affect approach and avoidance of virtual agents?}, series = {Frontiers in Virtual Reality}, volume = {3}, journal = {Frontiers in Virtual Reality}, issn = {2673-4192}, doi = {10.3389/frvir.2022.916575}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-293564}, year = {2022}, abstract = {Approach and avoidance of positive and negative social cues are fundamental to prevent isolation and ensure survival. High trait social anxiety is characterized by an avoidance of social situations and extensive avoidance is a risk factor for the development of social anxiety disorder (SAD). Therefore, experimental methods to assess social avoidance behavior in humans are essential. The social conditioned place preference (SCPP) paradigm is a well-established experimental paradigm in animal research that is used to objectively investigate social approach-avoidance mechanisms. We retranslated this paradigm for human research using virtual reality. To this end, 58 healthy adults were exposed to either a happy- or angry-looking virtual agent in a specific room, and the effects of this encounter on dwell time as well as evaluation of this room in a later test without an agent were examined. We did not observe a general SCPP effect on dwell time or ratings but discovered a moderation by trait social anxiety, in which participants with higher trait social anxiety spent less time in the room in which the angry agent was present before, suggesting that higher levels of trait social anxiety foster conditioned social avoidance. However, further studies are needed to verify this observation and substantiate an association with social anxiety disorder. We discussed the strengths, limitations, and technical implications of our paradigm for future investigations to more comprehensively understand the mechanisms involved in social anxiety and facilitate the development of new personalized treatment approaches by using virtual reality.}, language = {en} }