@phdthesis{Rasheed2019, author = {Rasheed, Huma}, title = {Development of simple and cost-effective High Performance Liquid Chromatography methods for quality control of essential beta-lactam antibiotics in low- and middle-income countries}, doi = {10.25972/OPUS-17721}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177214}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Assay and impurity profiling of the pharmaceuticals are the key routine quality control methods employed worldwide for which High Performance Liquid Chromatography (HPLC) is the most widely used technique. The ability to carry out these routine laboratory procedures in low- and middle- income countries (LMICs) need the methods to be based upon simple instruments manageable with moderate levels of personnel skill and costs involved. Simple, convenient, and cost effective reverse phase HPLC methods were developed using phosphate buffer and methanol as mobile phase with C18 column as stationary phase for the impurity profiling and assay of beta lactam antibiotics. Isocratic elution and UV detection was employed in these methods. Impurity profiling method was developed for coamoxiclav tablets and ceftriaxone bulk drug. The method for ceftriaxone included a supplementary method to quantify one of its known impurity (Impurity D of ceftriaxone). This method involved use of acetonitrile where as the two main methods were achieved on the targeted method design, described above. With the exception of impurity A of ceftriaxone, the methods developed can successfully quantify impurities to the concentration as low as ≤0.05\%, which is in accordance with the current guidelines for the impurity profiling of antibiotics issued by European Medicines Agency. As ensuring cost reduction was one of the key objectives of carrying out the method development exercise, in situ methods for the preparation of impurities were also identified and some new methods were introduced. The stability of beta lactam antibiotics and the choice of solvent were given due attention during the process of method development revealing information on the presence of new impurities. Deacetyl cefotaxime and 2-mercaptobenzathiazole were identified in this process as new impurities of ceftriaxone currently not listed under known impurities by United States Pharmacopoeia and European Pharmacopoeia. However, deacetyl cefotaxime is a known impurity of cefotaxime whereas the latter molecule is a degradation product of one of the synthesis impurities of ceftriaxone. This substance is reported to be carcinogenic and is resolved using the supplementary method developed for ceftriaxone, hence making its detection and quantification possible. A known inactive impurity of ceftriaxone (Impurity A, E-isomer of ceftriaxone) was` also shown to be produced by exposure to day light, thus warranting the light protection of the ceftriaxone solution, an information that is of critical importance in the clinical settings. A series of experimentation was carried out on the finished products of beta lactam antibiotics sampled from Pakistan and few other countries, to identify key quality issues in the samples. Though the limited sample size and convenient sampling did not provide results that could yield a decisive figure for the country status for prevalence of substandard and falsified medical products, but the experiments have clearly indicated that the problems in drug quality do exist and beta lactam antibiotics form a class of high-risk medicine with respect to surveillance for poor-quality medicines. Isolation of unknown impurities was also carried out along with the introduction of new and modified methods for preparation of impurities of beta-lactam antibiotics. In addition, detailed literature survey was carried out for understanding the complex problem of the poor-quality medicine, impact of poor quality antimicrobials on health care system and the magnitude of the problem at the global level. The country status of Pakistan regarding quality of medicines was recorded based upon the available documentary evidence. The current technologies and strategic options available for low- and middle-income countries in aiding fight for combating poor quality medicines was also laid down to design recommendations for Pakistan. A comprehensive review of the information technology tools used for identification and control of substandard and falsified medicines was also conducted.}, subject = {HPLC}, language = {en} } @article{RasheedHoelleinHolzgrabe2018, author = {Rasheed, Huma and H{\"o}llein, Ludwig and Holzgrabe, Ulrike}, title = {Future information technology tools for fighting substandard and falsified medicines in low- and middle-income countries}, series = {Frontiers in Pharmacology}, volume = {9}, journal = {Frontiers in Pharmacology}, number = {995}, doi = {10.3389/fphar.2018.00995}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177068}, year = {2018}, abstract = {Substandard and falsified (SF) medicines have emerged as a global public health issue within the last two decades especially in low- and middle-income countries (LMICs). Serious consequences of this problem include a loss of trust and increased financial costs due to less disease control and more frequent complications during therapy. Of note, antimicrobial resistance is an additional long-term implication of poor-quality antimicrobials. This review covers information technology tools including medicines authentication tools (MAT) as mobile apps and messaging service, 2D barcoding approaches with drug safety alert systems, web based drug safety alerts, radiofrequency identification tags, databases to support visual inspection, digital aids to enhance the performance of quality evaluation kits, reference libraries for identification of falsified and substandard medicines, and quality evaluation kits based on machine learning for field testing. While being easy to access and simple to use, these initiatives are gaining acceptance in LMICs. Implementing 2D barcoding based on end-to-end verification and "Track and Trace" systems has emerged as a step toward global security in the supply chain. A breakthrough in web-based drug safety alert systems and data bases was the establishment of the Global Surveillance and Monitoring System by the World Health Organization in 2013. Future applications include concepts including "lab on a chip" and "paper analytical devices" and are claimed to be convenient and simple to use as well as affordable. The principles discussed herein are making profound impact in the fight against substandard and falsified medicines, offering cheap and accessible solutions.}, language = {en} }