@phdthesis{Sauerwein2023, author = {Sauerwein, Till}, title = {Implementation and application of bioinformatical software for the analysis of dual RNA sequencing data of host and pathogen during infection}, doi = {10.25972/OPUS-30307}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-303075}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Since the advent of high-throughput sequencing technologies in the mid-2010s, RNA se- quencing (RNA-seq) has been established as the method of choice for studying gene expression. In comparison to microarray-based methods, which have mainly been used to study gene expression before the rise of RNA-seq, RNA-seq is able to profile the entire transcriptome of an organism without the need to predefine genes of interest. Today, a wide variety of RNA-seq methods and protocols exist, including dual RNA sequenc- ing (dual RNA-seq) and multi RNA sequencing (multi RNA-seq). Dual RNA-seq and multi RNA-seq simultaneously investigate the transcriptomes of two or more species, re- spectively. Therefore, the total RNA of all interacting species is sequenced together and only separated in silico. Compared to conventional RNA-seq, which can only investi- gate one species at a time, dual RNA-seq and multi RNA-seq analyses can connect the transcriptome changes of the species being investigated and thus give a clearer picture of the interspecies interactions. Dual RNA-seq and multi RNA-seq have been applied to a variety of host-pathogen, mutualistic and commensal interaction systems. We applied dual RNA-seq to a host-pathogen system of human mast cells and Staphylo- coccus aureus (S. aureus). S. aureus, a commensal gram-positive bacterium, can become an opportunistic pathogen and infect skin lesions of atopic dermatitis (AD) patients. Among the first immune cells S. aureus encounters are mast cells, which have previously been shown to be able to kill the bacteria by discharging antimicrobial products and re- leasing extracellular traps made of protein and deoxyribonucleic acid (DNA). However, S. aureus is known to evade the host's immune response by internalizing within mast cells. Our dual RNA-seq analysis of different infection settings revealed that mast cells and S. aureus need physical contact to influence each other's gene expression. We could show that S. aureus cells internalizing within mast cells undergo profound transcriptome changes to adjust their metabolism to survive in the intracellular niche. On the host side, we found out that infected mast cells elicit a type-I interferon (IFN-I) response in an autocrine manner and in a paracrine manner to non-infected bystander-cells. Our study provides the first evidence that mast cells are capable to produce IFN-I upon infection with a bacterial pathogen.}, subject = {Biologie}, language = {en} } @article{CorreiaSantosBischlerWestermannetal.2021, author = {Correia Santos, Sara and Bischler, Thorsten and Westermann, Alexander J. and Vogel, J{\"o}rg}, title = {MAPS integrates regulation of actin-targeting effector SteC into the virulence control network of Salmonella small RNA PinT}, series = {Cell Reports}, volume = {34}, journal = {Cell Reports}, number = {5}, doi = {10.1016/j.celrep.2021.108722}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259134}, pages = {108722}, year = {2021}, abstract = {A full understanding of the contribution of small RNAs (sRNAs) to bacterial virulence demands knowledge of their target suites under infection-relevant conditions. Here, we take an integrative approach to capturing targets of the Hfq-associated sRNA PinT, a known post-transcriptional timer of the two major virulence programs of Salmonella enterica. Using MS2 affinity purification and RNA sequencing (MAPS), we identify PinT ligands in bacteria under in vitro conditions mimicking specific stages of the infection cycle and in bacteria growing inside macrophages. This reveals PinT-mediated translational inhibition of the secreted effector kinase SteC, which had gone unnoticed in previous target searches. Using genetic, biochemical, and microscopic assays, we provide evidence for PinT-mediated repression of steC mRNA, eventually delaying actin rearrangements in infected host cells. Our findings support the role of PinT as a central post-transcriptional regulator in Salmonella virulence and illustrate the need for complementary methods to reveal the full target suites of sRNAs.}, language = {en} } @article{EiringMcLaughlinMatikondaetal.2021, author = {Eiring, Patrick and McLaughlin, Ryan and Matikonda, Siddharth S. and Han, Zhongying and Grabenhorst, Lennart and Helmerich, Dominic A. and Meub, Mara and Beliu, Gerti and Luciano, Michael and Bandi, Venu and Zijlstra, Niels and Shi, Zhen-Dan and Tarasov, Sergey G. and Swenson, Rolf and Tinnefeld, Philip and Glembockyte, Viktorija and Cordes, Thorben and Sauer, Markus and Schnermann, Martin J.}, title = {Targetable conformationally restricted cyanines enable photon-count-limited applications}, series = {Angewandte Chemie Internationale Edition}, volume = {60}, journal = {Angewandte Chemie Internationale Edition}, number = {51}, doi = {10.1002/anie.202109749}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256559}, pages = {26685-26693}, year = {2021}, abstract = {Cyanine dyes are exceptionally useful probes for a range of fluorescence-based applications, but their photon output can be limited by trans-to-cis photoisomerization. We recently demonstrated that appending a ring system to the pentamethine cyanine ring system improves the quantum yield and extends the fluorescence lifetime. Here, we report an optimized synthesis of persulfonated variants that enable efficient labeling of nucleic acids and proteins. We demonstrate that a bifunctional sulfonated tertiary amide significantly improves the optical properties of the resulting bioconjugates. These new conformationally restricted cyanines are compared to the parent cyanine derivatives in a range of contexts. These include their use in the plasmonic hotspot of a DNA-nanoantenna, in single-molecule F{\"o}rster-resonance energy transfer (FRET) applications, far-red fluorescence-lifetime imaging microscopy (FLIM), and single-molecule localization microscopy (SMLM). These efforts define contexts in which eliminating cyanine isomerization provides meaningful benefits to imaging performance.}, language = {en} } @article{FukushimaPollock2020, author = {Fukushima, Kenji and Pollock, David D.}, title = {Amalgamated cross-species transcriptomes reveal organ-specific propensity in gene expression evolution}, series = {Nature Communications}, volume = {11,}, journal = {Nature Communications}, doi = {10.1038/s41467-020-18090-8}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230468}, year = {2020}, abstract = {The origins of multicellular physiology are tied to evolution of gene expression. Genes can shift expression as organisms evolve, but how ancestral expression influences altered descendant expression is not well understood. To examine this, we amalgamate 1,903 RNA-seq datasets from 182 research projects, including 6 organs in 21 vertebrate species. Quality control eliminates project-specific biases, and expression shifts are reconstructed using gene-family-wise phylogenetic Ornstein-Uhlenbeck models. Expression shifts following gene duplication result in more drastic changes in expression properties than shifts without gene duplication. The expression properties are tightly coupled with protein evolutionary rate, depending on whether and how gene duplication occurred. Fluxes in expression patterns among organs are nonrandom, forming modular connections that are reshaped by gene duplication. Thus, if expression shifts, ancestral expression in some organs induces a strong propensity for expression in particular organs in descendants. Regardless of whether the shifts are adaptive or not, this supports a major role for what might be termed preadaptive pathways of gene expression evolution.}, language = {en} } @article{LukešGlatzovaKvičalovaetal.2017, author = {Lukeš, Tom{\´a}š and Glatzov{\´a}, Daniela and Kv{\´i}čalov{\´a}, Zuzana and Levet, Florian and Benda, Aleš and Letschert, Sebastian and Sauer, Markus and Brdička, Tom{\´a}š and Lasser, Theo and Cebecauer, Marek}, title = {Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, doi = {10.1038/s41467-017-01857-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172993}, year = {2017}, abstract = {Quantitative approaches for characterizing molecular organization of cell membrane molecules under physiological and pathological conditions profit from recently developed super-resolution imaging techniques. Current tools employ statistical algorithms to determine clusters of molecules based on single-molecule localization microscopy (SMLM) data. These approaches are limited by the ability of SMLM techniques to identify and localize molecules in densely populated areas and experimental conditions of sample preparation and image acquisition. We have developed a robust, model-free, quantitative clustering analysis to determine the distribution of membrane molecules that excels in densely labeled areas and is tolerant to various experimental conditions, i.e. multiple-blinking or high blinking rates. The method is based on a TIRF microscope followed by a super-resolution optical fluctuation imaging (SOFI) analysis. The effectiveness and robustness of the method is validated using simulated and experimental data investigating nanoscale distribution of CD4 glycoprotein mutants in the plasma membrane of T cells.}, language = {en} } @article{CosteaCoelhoSunagawaetal.2017, author = {Costea, Paul I. and Coelho, Louis Pedro and Sunagawa, Shinichi and Munch, Robin and Huerta-Cepas, Jaime and Forslund, Kristoffer and Hildebrand, Falk and Kushugulova, Almagul and Zeller, Georg and Bork, Peer}, title = {Subspecies in the global human gut microbiome}, series = {Molecular Systems Biology}, volume = {13}, journal = {Molecular Systems Biology}, number = {12}, doi = {10.15252/msb.20177589}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172674}, year = {2017}, abstract = {Population genomics of prokaryotes has been studied in depth in only a small number of primarily pathogenic bacteria, as genome sequences of isolates of diverse origin are lacking for most species. Here, we conducted a large-scale survey of population structure in prevalent human gut microbial species, sampled from their natural environment, with a culture-independent metagenomic approach. We examined the variation landscape of 71 species in 2,144 human fecal metagenomes and found that in 44 of these, accounting for 72\% of the total assigned microbial abundance, single-nucleotide variation clearly indicates the existence of sub-populations (here termed subspecies). A single subspecies (per species) usually dominates within each host, as expected from ecological theory. At the global scale, geographic distributions of subspecies differ between phyla, with Firmicutes subspecies being significantly more geographically restricted. To investigate the functional significance of the delineated subspecies, we identified genes that consistently distinguish them in a manner that is independent of reference genomes. We further associated these subspecies-specific genes with properties of the microbial community and the host. For example, two of the three Eubacterium rectale subspecies consistently harbor an accessory pro-inflammatory flagellum operon that is associated with lower gut community diversity, higher host BMI, and higher blood fasting insulin levels. Using an additional 676 human oral samples, we further demonstrate the existence of niche specialized subspecies in the different parts of the oral cavity. Taken together, we provide evidence for subspecies in the majority of abundant gut prokaryotes, leading to a better functional and ecological understanding of the human gut microbiome in conjunction with its host.}, language = {en} } @article{MendeLetunicHuertaCepasetal.2017, author = {Mende, Daniel R. and Letunic, Ivica and Huerta-Cepas, Jaime and Li, Simone S. and Forslund, Kristoffer and Sunagawa, Shinichi and Bork, Peer}, title = {proGenomes: a resource for consistent functional and taxonomic annotations of prokaryotic genomes}, series = {Nucleic Acids Research}, volume = {45}, journal = {Nucleic Acids Research}, number = {D1}, doi = {10.1093/nar/gkw989}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171987}, pages = {D529-D534}, year = {2017}, abstract = {The availability of microbial genomes has opened many new avenues of research within microbiology. This has been driven primarily by comparative genomics approaches, which rely on accurate and consistent characterization of genomic sequences. It is nevertheless difficult to obtain consistent taxonomic and integrated functional annotations for defined prokaryotic clades. Thus, we developed proGenomes, a resource that provides user-friendly access to currently 25 038 high-quality genomes whose sequences and consistent annotations can be retrieved individually or by taxonomic clade. These genomes are assigned to 5306 consistent and accurate taxonomic species clusters based on previously established methodology. proGenomes also contains functional information for almost 80 million protein-coding genes, including a comprehensive set of general annotations and more focused annotations for carbohydrate-active enzymes and antibiotic resistance genes. Additionally, broad habitat information is provided for many genomes. All genomes and associated information can be downloaded by user-selected clade or multiple habitat-specific sets of representative genomes. We expect that the availability of high-quality genomes with comprehensive functional annotations will promote advances in clinical microbial genomics, functional evolution and other subfields of microbiology. proGenomes is available at http://progenomes.embl.de.}, language = {en} } @article{WuPonsGoudetetal.2017, author = {Wu, Yu and Pons, Val{\´e}rie and Goudet, Am{\´e}lie and Panigai, Laetitia and Fischer, Annette and Herweg, Jo-Ana and Kali, Sabrina and Davey, Robert A. and Laporte, J{\´e}r{\^o}me and Bouclier, C{\´e}line and Yousfi, Rahima and Aubenque, C{\´e}line and Merer, Goulven and Gobbo, Emilie and Lopez, Roman and Gillet, Cynthia and Cojean, Sandrine and Popoff, Michel R. and Clayette, Pascal and Le Grand, Roger and Boulogne, Claire and Tordo, No{\"e}l and Lemichez, Emmanuel and Loiseau, Philippe M. and Rudel, Thomas and Sauvaire, Didier and Cintrat, Jean-Christophe and Gillet, Daniel and Barbier, Julien}, title = {ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-15466-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173170}, year = {2017}, abstract = {Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identifed the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efciently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.}, language = {en} } @article{ChengOthmanStopperetal.2017, author = {Cheng, Cheng and Othman, Eman M. and Stopper, Helga and Edrada-Ebel, RuAngelie and Hentschel, Ute and Abdelmohsen, Usama Ramadan}, title = {Isolation of petrocidin A, a new cytotoxic cyclic dipeptide from the marine sponge-derived bacterium \(Streptomyces\) sp. SBT348}, series = {Marine Drugs}, volume = {15}, journal = {Marine Drugs}, number = {12}, doi = {10.3390/md15120383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172644}, year = {2017}, abstract = {A new cyclic dipeptide, petrocidin A (\(\textbf{1}\)), along with three known compounds—2,3-dihydroxybenzoic acid (\(\textbf{2}\)), 2,3-dihydroxybenzamide (\(\textbf{3}\)), and maltol (\(\textbf{4}\))—were isolated from the solid culture of \(Streptomyces\) sp. SBT348. The strain \(Streptomyces\) sp. SBT348 had been prioritized in a strain collection of 64 sponge-associated actinomycetes based on its distinct metabolomic profile using liquid chromatography/high-resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR). The absolute configuration of all α-amino acids was determined by HPLC analysis after derivatization with Marfey's reagent and comparison with commercially available reference amino acids. Structure elucidation was pursued in the presented study by mass spectrometry and NMR spectral data. Petrocidin A (\(\textbf{1}\)) and 2,3-dihydroxybenzamide (\(\textbf{3}\)) exhibited significant cytotoxicity towards the human promyelocytic HL-60 and the human colon adenocarcinoma HT-29 cell lines. These results demonstrated the potential of sponge-associated actinomycetes for the discovery of novel and pharmacologically active natural products.}, language = {en} } @article{KasaragodMidekessaSridharetal.2017, author = {Kasaragod, Prasad and Midekessa, Getnet B. and Sridhar, Shruthi and Schmitz, Werner and Kiema, Tiila-Riikka and Hiltunen, Jukka K. and Wierenga, Rik K.}, title = {Structural enzymology comparisons of multifunctional enzyme, type-1 (MFE1): the flexibility of its dehydrogenase part}, series = {FEBS Open Bio}, volume = {7}, journal = {FEBS Open Bio}, number = {12}, doi = {10.1002/2211-5463.12337}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172732}, pages = {1830-1842}, year = {2017}, abstract = {Multifunctional enzyme, type-1 (MFE1) is a monomeric enzyme with a 2E-enoyl-CoA hydratase and a 3S-hydroxyacyl-CoA dehydrogenase (HAD) active site. Enzyme kinetic data of rat peroxisomal MFE1 show that the catalytic efficiencies for converting the short-chain substrate 2E-butenoyl-CoA into acetoacetyl-CoA are much lower when compared with those of the homologous monofunctional enzymes. The mode of binding of acetoacetyl-CoA (to the hydratase active site) and the very similar mode of binding of NAD\(^+\) and NADH (to the HAD part) are described and compared with those of their monofunctional counterparts. Structural comparisons suggest that the conformational flexibility of the HAD and hydratase parts of MFE1 are correlated. The possible importance of the conformational flexibility of MFE1 for its biocatalytic properties is discussed.}, language = {en} } @article{SalkerSinghZengetal.2017, author = {Salker, Madhuri S. and Singh, Yogesh and Zeng, Ni and Chen, Hong and Zhang, Shaqiu and Umbach, Anja T. and Fakhri, Hajar and Kohlhofer, Ursula and Quintanilla-Martinez, Leticia and Durairaj, Ruban R. Peter and Barros, Flavio S. V. and Vrljicak, Pavle and Ott, Sascha and Brucker, Sara Y. and Wallwiener, Diethelm and Madunić, Ivana Vrhovac and Breljak, Davorka and Sabolić, Ivan and Koepsell, Hermann and Brosens, Jan J. and Lang, Florian}, title = {Loss of endometrial sodium glucose cotransporter SGLT1 is detrimental to embryo survival and fetal growth in pregnancy}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, doi = {10.1038/s41598-017-11674-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173814}, year = {2017}, abstract = {Embryo implantation requires a hospitable uterine environment. A key metabolic change that occurs during the peri-implantation period, and throughout early pregnancy, is the rise in endometrial glycogen content. Glycogen accumulation requires prior cellular uptake of glucose. Here we show that both human and murine endometrial epithelial cells express the high affinity Na\(^+\)-coupled glucose carrier SGLT1. Ussing chamber experiments revealed electrogenic glucose transport across the endometrium in wild type (\(Slc5a1^{+/+}\)) but not in SGLT1 defcient (\(Slc5a1^{-/-}\)) mice. Endometrial glycogen content, litter size and weight of offspring at birth were signifcantly lower in \(Slc5a1^{-/-}\) mice. In humans, \(SLC5A1\) expression was upregulated upon decidualization of primary endometrial stromal cells. Endometrial \(SLC5A1\) expression during the implantation window was attenuated in patients with recurrent pregnancy loss when compared with control subjects. Our fndings reveal a novel mechanism establishing adequate endometrial glycogen stores for pregnancy. Disruption of this histiotrophic pathway leads to adverse pregnancy outcome.}, language = {en} } @article{MitjansBegemannJuetal.2017, author = {Mitjans, M. and Begemann, M. and Ju, A. and Dere, E. and W{\"u}stefeld, L. and Hofer, S. and Hassouna, I. and Balkenhol, J. and Oliveira, B. and Van der Auwera, S. and Tammer, R. and Hammerschmidt, K. and V{\"o}lzke, H. and Homuth, G. and Cecconi, F. and Chowdhury, K. and Grabe, H. and Frahm, J. and Boretius, S. and Dandekar, T. and Ehrenreich, H.}, title = {Sexual dimorphism of \(AMBRA1\)-related autistic features in human and mouse}, series = {Translational Psychiatry}, volume = {2017}, journal = {Translational Psychiatry}, number = {7}, doi = {10.1038/tp.2017.213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173782}, year = {2017}, abstract = {\(Ambra1\) is linked to autophagy and neurodevelopment. Heterozygous \(Ambra1\) deficiency induces autism-like behavior in a sexually dimorphic manner. Extraordinarily, autistic features are seen in female mice only, combined with stronger Ambra1 protein reduction in brain compared to males. However, significance of \(AMBRA1\) for autistic phenotypes in humans and, apart from behavior, for other autism-typical features, namely early brain enlargement or increased seizure propensity, has remained unexplored. Here we show in two independent human samples that a single normal \(AMBRA1\) genotype, the intronic SNP rs3802890-AA, is associated with autistic features in women, who also display lower \(AMBRA1\) mRNA expression in peripheral blood mononuclear cells relative to female GG carriers. Located within a non-coding RNA, likely relevant for mRNA and protein interaction, rs3802890 (A versus G allele) may affect its stability through modification of folding, as predicted by \(in\) \(silico\) analysis. Searching for further autism-relevant characteristics in \(Ambra1^{+/-}\) mice, we observe reduced interest of female but not male mutants regarding pheromone signals of the respective other gender in the social intellicage set-up. Moreover, altered pentylentetrazol-induced seizure propensity, an \(in\) \(vivo\) readout of neuronal excitation-inhibition dysbalance, becomes obvious exclusively in female mutants. Magnetic resonance imaging reveals mild prepubertal brain enlargement in both genders, uncoupling enhanced brain dimensions from the primarily female expression of all other autistic phenotypes investigated here. These data support a role of \(AMBRA1/Ambra1\) partial loss-of-function genotypes for female autistic traits. Moreover, they suggest \(Ambra1\) heterozygous mice as a novel multifaceted and construct-valid genetic mouse model for female autism.}, language = {en} } @article{KadochovaFrouzRoces2017, author = {Kadochov{\´a}, Štěp{\´a}nka and Frouz, Jan and Roces, Flavio}, title = {Sun basking in red wood ants Formica polyctena (Hymenoptera, Formicidae): Individual behaviour and temperature-dependent respiration rates}, series = {PLoS ONE}, volume = {12}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0170570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171936}, year = {2017}, abstract = {In early spring, red wood ants Formica polyctena are often observed clustering on the nest surface in large numbers basking in the sun. It has been hypothesized that sun-basking behaviour may contribute to nest heating because of both heat carriage into the nest by sunbasking workers, and catabolic heat production from the mobilization of the workers' lipid reserves. We investigated sun-basking behaviour in laboratory colonies of F. polyctena exposed to an artificial heat source. Observations on identified individuals revealed that not all ants bask in the sun. Sun-basking and non-sun-basking workers did not differ in body size nor in respiration rates. The number of sun-basking ants and the number of their visits to the hot spot depended on the temperature of both the air and the hot spot. To investigate whether sun basking leads to a physiological activation linked with increased lipolysis, we measured respiration rates of individual workers as a function of temperature, and compared respiration rates of sun-basking workers before and two days after they were allowed to expose themselves to a heat source over 10 days, at self-determined intervals. As expected for ectothermic animals, respiration rates increased with increasing temperatures in the range 5 to 35˚C. However, the respiration rates of sun-basking workers measured two days after a long-term exposure to the heat source were similar to those before sun basking, providing no evidence for a sustained increase of the basal metabolic rates after prolonged sun basking. Based on our measurements, we argue that self-heating of the nest mound in early spring has therefore to rely on alternative heat sources, and speculate that physical transport of heat in the ant bodies may have a significant effect.}, language = {en} } @article{RuppertFranzSaratisetal.2017, author = {Ruppert, Manuela and Franz, Mirjam and Saratis, Anastasios and Escarcena, Laura Velo and Hendrich, Oliver and Gooi, Li Ming and Schwenkert, Isabell and Klebes, Ansgar and Scholz, Henrike}, title = {Hangover links nuclear RNA signaling to cAMP regulation via the phosphodiesterase 4d ortholog dunce}, series = {Cell Reports}, volume = {18}, journal = {Cell Reports}, number = {2}, doi = {10.1016/j.celrep.2016.12.048}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-171950}, pages = {533-544}, year = {2017}, abstract = {The hangover gene defines a cellular stress pathway that is required for rapid ethanol tolerance in Drosophila melanogaster. To understand how cellular stress changes neuronal function, we analyzed Hangover function on a cellular and neuronal level. We provide evidence that Hangover acts as a nuclear RNA binding protein and we identified the phosphodiesterase 4d ortholog dunce as a target RNA. We generated a transcript-specific dunce mutant that is impaired not only in ethanol tolerance but also in the cellular stress response. At the neuronal level, Dunce and Hangover are required in the same neuron pair to regulate experience-dependent motor output. Within these neurons, two cyclic AMP (cAMP)-dependent mechanisms balance the degree of tolerance. The balance is achieved by feedback regulation of Hangover and dunce transcript levels. This study provides insight into how nuclear Hangover/RNA signaling is linked to the cytoplasmic regulation of cAMP levels and results in neuronal adaptation and behavioral changes.}, language = {en} } @article{DingemansMonsieursYuetal.2016, author = {Dingemans, Josef and Monsieurs, Pieter and Yu, Sung-Huan and Crabb{\´e}, Aur{\´e}lie and F{\"o}rstner, Konrad U. and Malfroot, Anne and Cornelis, Pierre and Van Houdt, Rob}, title = {Effect of Shear Stress on Pseudomonas aeruginosa Isolated from the Cystic Fibrosis Lung}, series = {mBio}, volume = {7}, journal = {mBio}, number = {4}, doi = {10.1128/mBio.00813-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165821}, pages = {e00813-16}, year = {2016}, abstract = {Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle.}, language = {en} } @article{EneLohseVladuetal.2016, author = {Ene, Iuliana V. and Lohse, Matthew B. and Vladu, Adrian V. and Morschh{\"a}user, Joachim and Johnson, Alexander D. and Bennett, Richard J.}, title = {Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells}, series = {mBio}, volume = {7}, journal = {mBio}, number = {6}, doi = {10.1128/mBio.01269-16}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165818}, pages = {e01269-16}, year = {2016}, abstract = {The white-opaque switch is a bistable, epigenetic transition affecting multiple traits in Candida albicans including mating, immunogenicity, and niche specificity. To compare how the two cell states respond to external cues, we examined the fitness, phenotypic switching, and filamentation properties of white cells and opaque cells under 1,440 different conditions at 25°C and 37°C. We demonstrate that white and opaque cells display striking differences in their integration of metabolic and thermal cues, so that the two states exhibit optimal fitness under distinct conditions. White cells were fitter than opaque cells under a wide range of environmental conditions, including growth at various pHs and in the presence of chemical stresses or antifungal drugs. This difference was exacerbated at 37°C, consistent with white cells being the default state of C. albicans in the mammalian host. In contrast, opaque cells showed greater fitness than white cells under select nutritional conditions, including growth on diverse peptides at 25°C. We further demonstrate that filamentation is significantly rewired between the two states, with white and opaque cells undergoing filamentous growth in response to distinct external cues. Genetic analysis was used to identify signaling pathways impacting the white-opaque transition both in vitro and in a murine model of commensal colonization, and three sugar sensing pathways are revealed as regulators of the switch. Together, these findings establish that white and opaque cells are programmed for differential integration of metabolic and thermal cues and that opaque cells represent a more metabolically specialized cell state than the default white state.}, language = {en} } @article{AlizadehradKruegerEngstleretal.2015, author = {Alizadehrad, Davod and Kr{\"u}ger, Timothy and Engstler, Markus and Stark, Holger}, title = {Simulating the complex cell design of Trypanosoma brucei and its motility}, series = {PLOS Computational Biology}, volume = {11}, journal = {PLOS Computational Biology}, number = {1}, doi = {10.1371/journal.pcbi.1003967}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144610}, pages = {e1003967}, year = {2015}, abstract = {The flagellate Trypanosoma brucei, which causes the sleeping sickness when infecting a mammalian host, goes through an intricate life cycle. It has a rather complex propulsion mechanism and swims in diverse microenvironments. These continuously exert selective pressure, to which the trypanosome adjusts with its architecture and behavior. As a result, the trypanosome assumes a diversity of complex morphotypes during its life cycle. However, although cell biology has detailed form and function of most of them, experimental data on the dynamic behavior and development of most morphotypes is lacking. Here we show that simulation science can predict intermediate cell designs by conducting specific and controlled modifications of an accurate, nature-inspired cell model, which we developed using information from live cell analyses. The cell models account for several important characteristics of the real trypanosomal morphotypes, such as the geometry and elastic properties of the cell body, and their swimming mechanism using an eukaryotic flagellum. We introduce an elastic network model for the cell body, including bending rigidity and simulate swimming in a fluid environment, using the mesoscale simulation technique called multi-particle collision dynamics. The in silico trypanosome of the bloodstream form displays the characteristic in vivo rotational and translational motility pattern that is crucial for survival and virulence in the vertebrate host. Moreover, our model accurately simulates the trypanosome's tumbling and backward motion. We show that the distinctive course of the attached flagellum around the cell body is one important aspect to produce the observed swimming behavior in a viscous fluid, and also required to reach the maximal swimming velocity. Changing details of the flagellar attachment generates less efficient swimmers. We also simulate different morphotypes that occur during the parasite's development in the tsetse fly, and predict a flagellar course we have not been able to measure in experiments so far.}, language = {en} } @article{HetzAcikgoezVossetal.2014, author = {Hetz, Susan and Acikgoez, Ali and Voss, Ulrike and Nieber, Karen and Holland, Heidrun and Hegewald, Cindy and Till, Holger and Metzger, Roman and Metzger, Marco}, title = {In Vivo Transplantation of Neurosphere-Like Bodies Derived from the Human Postnatal and Adult Enteric Nervous System: A Pilot Study}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {4}, doi = {10.1371/journal.pone.0093605}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116793}, pages = {e93605}, year = {2014}, abstract = {Recent advances in the in vitro characterization of human adult enteric neural progenitor cells have opened new possibilities for cell-based therapies in gastrointestinal motility disorders. However, whether these cells are able to integrate within an in vivo gut environment is still unclear. In this study, we transplanted neural progenitor-containing neurosphere-like bodies (NLBs) in a mouse model of hypoganglionosis and analyzed cellular integration of NLB-derived cell types and functional improvement. NLBs were propagated from postnatal and adult human gut tissues. Cells were characterized by immunohistochemistry, quantitative PCR and subtelomere fluorescence in situ hybridization (FISH). For in vivo evaluation, the plexus of murine colon was damaged by the application of cationic surfactant benzalkonium chloride which was followed by the transplantation of NLBs in a fibrin matrix. After 4 weeks, grafted human cells were visualized by combined in situ hybridization (Alu) and immunohistochemistry (PGP9.5, GFAP, SMA). In addition, we determined nitric oxide synthase (NOS)-positive neurons and measured hypertrophic effects in the ENS and musculature. Contractility of treated guts was assessed in organ bath after electrical field stimulation. NLBs could be reproducibly generated without any signs of chromosomal alterations using subtelomere FISH. NLB-derived cells integrated within the host tissue and showed expected differentiated phenotypes i.e. enteric neurons, glia and smooth muscle-like cells following in vivo transplantation. Our data suggest biological effects of the transplanted NLB cells on tissue contractility, although robust statistical results could not be obtained due to the small sample size. Further, it is unclear, which of the NLB cell types including neural progenitors have direct restoring effects or, alternatively may act via 'bystander' mechanisms in vivo. Our findings provide further evidence that NLB transplantation can be considered as feasible tool to improve ENS function in a variety of gastrointestinal disorders.}, language = {en} }