@article{OPUS4-22086, title = {Search for a new heavy gauge-boson resonance decaying into a lepton and missing transverse momentum in 36 fb\(^{-1}\) of \({pp}\) collisions at root s=13 TeV with the ATLAS experiment}, series = {The European Physical Journal C}, volume = {78}, journal = {The European Physical Journal C}, number = {401}, organization = {The ATLAS Collaboration}, doi = {10.1140/epjc/s10052-018-5877-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-220869}, pages = {1-23}, year = {2018}, abstract = {The results of a search for new heavy W' bosons decaying to an electron or muon and a neutrino using proton-proton collision data at a centre-of-mass energy of root s = 13 TeV are presented. The dataset was collected in 2015 and 2016 by the ATLAS experiment at the Large Hadron Collider and corresponds to an integrated luminosity of 36.1 fb(-1). As no excess of events above the Standard Model prediction is observed, the results are used to set upper limits on the W' boson cross-section times branching ratio to an electron or muon and a neutrino as a function of the W' mass. Assuming a W' boson with the same couplings as the Standard Model W boson, W' masses below 5.1 TeV are excluded at the 95\% confidence level.}, language = {en} } @article{BiedermannBraeuerDenneretal.2017, author = {Biedermann, Benedikt and Br{\"a}uer, Stephan and Denner, Ansgar and Pellen, Mathieu and Schumann, Steffen and Thompson, Jennifer M.}, title = {Automation of NLO QCD and EW corrections with SHERPA and RECOLA}, series = {European Physical Journal C}, volume = {77}, journal = {European Physical Journal C}, number = {492}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170615}, year = {2017}, abstract = {This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa +Recola framework allows for the computation of - in principle - any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy.}, language = {en} }