@phdthesis{Hauptstein2023, author = {Hauptstein, Niklas}, title = {Site directed molecular design and performances of Interferon-α2a and Interleukin-4 bioconjugates with PEG alternative polymers}, doi = {10.25972/OPUS-29691}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-296911}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Serum half-life elongation as well as the immobilization of small proteins like cytokines is still one of the key challenges for biologics. This accounts also for cytokines, which often have a molecular weight between 5 and 40 kDa and are therefore prone to elimination by renal filtration and sinusoidal lining cells. To solve this problem biologics are often conjugated to poly(ethylene glycol) (PEG), which is the gold standard for the so called PEGylation. PEG is a synthetic, non-biodegradable polymer for increasing the hydrodynamic radius of the conjugated protein to modulate their pharmacokinetic performance and prolong their therapeutic outcome. Though the benefits of PEGylation are significant, they also come with a prize, which is a loss in bioactivity due to steric hindrance and most often the usage of heterogeneous bioconjugation chemistries. While PEG is a safe excipient in most cases, an increasing number of PEG related side-effects, such as immunological responses like hypersensitivity and accelerated blood clearance upon repetitive exposure occur, which highlights the need for PEG alternative polymers, that can replace PEG in such cases. Another promising method to significantly prolong the residence time of biologics is to immobilize them at a desired location. To achieve this, the transglutaminase (TG) Factor XIIIa (FXIIIa), which is an important human enzyme during blood coagulation can be used. FXIIIa can recognize specific peptide sequences that contain a lysine as substrates and link them covalently to another peptide sequence, that contains a glutamine, forming an isopeptide bond. This mechanism can be used to link modified proteins, which have a N- or C-terminal incorporated signal peptide by mutation, to the extracellular matrix (ECM) of tissues. Additionally, both above-described methods can be combined. By artificially introducing a TG recognition sequence, it is possible to attach an azide group containing peptide site-specifically to the TG, recognition sequence. This allows the creation of a site-selective reactive site at the proteins N- or C-terminus, which can then be targeted by cyclooctyne functionalized polymers, just like amber codon functionalized proteins. This thesis has focused on the two cytokines human Interferon-α2a (IFN-α2a) and human, as well as murine Interleukin-4 (IL-4) as model proteins to investigate the above-described challenges. IFN-α2a has been chosen as a model protein because it is an approved drug since 1986 in systemic applications against some viral infections, as well as several types of cancer. Furthermore, IFN-α2 is also approved in three PEGylated forms, which have different molecular weights and use different conjugation techniques for polymer attachment. This turns it into an ideal candidate to compare new polymers against the gold standard PEG. Interleukin-4 (IL-4) has been chosen as the second model protein due to its similar size and biopotency. This allows to compare found trends from IFN-α2a with another bioconjugate platform and distinguish between IFN-α2a specific, or general trends. Furthermore, IL-4 is a promising candidate for clinical applications as it is a potent anti-inflammatory protein, which polarizes macrophages from the pro-inflammatory M1 state into the anti-inflammatory M2 state.}, subject = {Cytokine}, language = {en} } @phdthesis{Spieler2021, author = {Spieler, Valerie}, title = {Bioinspired drug delivery of interleukin-4}, doi = {10.25972/OPUS-19359}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-193590}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Chronic inflammatory diseases such as rheumatoid arthritis, type 2 diabetes and cardiovascular diseases, are associated with the homeostatic imbalance of one of several physiological systems combined with the lack of spontaneous remission, which causes the disease to persevere throughout patients' lives. The inflammatory response relies mainly on tissue-resident, pro-inflammatory M1 type macrophages and, consequently, a chance for therapeutic intervention lies in driving macrophage polarization towards the anti-inflammatory M2 phenotype. Therefore, anti-inflammatory cytokines that promote M2 polarization, including interleukin-4 (IL4), have promising therapeutic potential. Unfortunately, their systemic use is hampered by a short serum half-life and dose-limiting toxicity. On the way towards cytokine therapies with superior safety and efficacy, this thesis is focused on designing bioresponsive delivery systems for the anti-inflammatory cytokine IL4. Chapter 1 describes how anti-inflammatory cytokines are tightly regulated in chronic, systemic inflammation as in rheumatoid arthritis but also in acute, local inflammation as in myocardial infarction. Both diseases show a characteristic progression during which anti-inflammatory cytokine delivery is of variable benefit. A conventional, passive drug delivery system is unlikely to release the cytokines such that the delivery matches the dynamic course of the (patho-)physiological progress. This chapter presents a blueprint for active drug delivery systems equipped with a 24/7 inflammation detector that continuously senses for matrix metalloproteinases (MMP) as surrogate markers of the disease progress and responds by releasing cytokines into the affected tissues at the right time and place. Because they are silent during phases of low disease activity, bioresponsive depots could be used to treat patients in asymptomatic states, as a preventive measure. The drug delivery system only gets activated during flares of inflammation, which are then immediately suppressed by the released cytokine drug and could prevent the steady damage of subclinical chronic inflammation, and therefore reduce hospitalization rates. In a first proof of concept study on controlled cytokine delivery (chapter 2), we developed IL4-decorated particles aiming at sustained and localized cytokine activity. Genetic code expansion was deployed to generate muteins with the IL4's lysine 42 replaced by two different unnatural amino acids bearing a side chain suitable for click chemistry modification. The new IL4 muteins were thoroughly characterized to ensure proper folding and full bioactivity. Both muteins showed cell-stimulating ability and binding affinity to IL4 receptor alpha similar to those of wild type IL4. Copper-catalyzed (CuAAC) and strain-promoted (SPAAC) azide-alkyne cycloadditions were used to site-selectively anchor IL4 to agarose particles. These particles had sustained IL4 activity, as demonstrated by the induction of TF-1 cell proliferation and anti-inflammatory M2 polarization of M-CSF-generated human macrophages. This approach of site-directed IL4 anchoring on particles demonstrates that cytokine-functionalized particles can provide sustained and spatially controlled immune-modulating stimuli. The idea of a 24/7 sensing, MMP driven cytokine delivery system, as described in the introductory chapter, was applied in chapter 3. There, we simulated the natural process of cytokine storage in the extracellular matrix (ECM) by using an injectable solution of IL4 for depot formation by enzyme-catalyzed covalent attachment to ECM components such as fibronectin. The immobilized construct is meant to be cleaved from the ECM by matrix-metalloproteinases (MMPs) which are upregulated during flares of inflammation. These two functionalities are facilitated by a peptide containing two sequences: a protease-sensitive peptide linker (PSL) for MMP cleavage and a sequence for covalent attachment by activated human transglutaminase FXIIIa (TGase) included in the injection mix for co-administration. This peptide was site-selectively conjugated to the unnatural amino acid at IL4 position 42 allowing to preserve wild type bioactivity of IL4. In vitro experiments confirmed the anticipated MMP response towards the PSL and TGase-mediated construct attachment to fibronectin of the ECM. Furthermore, the IL4-peptide conjugates were able to reduce inflammation and protect non-load bearing cartilage along with the anterior cruciate ligament from degradation in an osteoarthritis model in rabbits. This represents the first step towards a minimally invasive treatment option using bioresponsive cytokine depots with potential clinical value for inflammatory conditions. One of the challenges with this approach was the production of the cytokine conjugate, with incorporation of the unnatural amino acid into IL4 being the main bottleneck. Therefore, in chapter 4, we designed a simplified version of this depot system by genetically fusing the bifunctional peptide via a flexible peptide spacer to murine IL4. While human IL4 loses its activity upon C-terminal elongation, murine IL4 is not affected by this modification. The produced murine IL4 fusion protein could be effectively bound to in vitro grown extracellular matrix in presence of TGase. Moreover, the protease-sensitive linker was selectively recognized and cleaved by MMPs, liberating intact and active IL4, although at a slower rate than expected. Murine IL4 offers the advantage to evaluate the bioresponsive cytokine depot in many available mouse models, which was so far not possible with human IL4 due to species selectivity. For murine IL4, the approach was further extended to systemic delivery in chapter 5. To increase the half-life and specifically target disease sites, we engineered a murine IL4 variant conjugated with a folate-bearing PEG chain for targeting of activated macrophages. The bioactive IL4 conjugate had a high serum stability and the PEGylation increased the half-life to 4 h in vivo. Surprisingly, the folate moiety did not improve targeting in an antigen-induced arthritis (AIA) mouse model. IL4-PEG performed better in targeting the inflamed joint, while IL4-PEG-folate showed stronger accumulation in the liver. Fortunately, the modular nature of the IL4 conjugate facilitates convenient adaption of PEG chain length and the targeting moiety to further improve the half-life and localization of the cytokine. In summary, this thesis describes a platform technology for the controlled release of cytokines in response to inflammation. By restricting the release of the therapeutic to the site of inflammation, the benefit-risk ratio of this potent class of biologics can be positively influenced. Future research will help to deepen our understanding of how to perfectly combine cytokine, protease-sensitive linker and immobilization tag or targeting moiety to tackle different diseases.}, subject = {Targeted drug delivery}, language = {en} } @phdthesis{Werner2015, author = {Werner, Vera}, title = {Pharmaceutically relevant protein-protein interactions for controlled drug delivery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117409}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts - NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) - and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies.}, subject = {Protein-Protein-Wechselwirkung}, language = {en} } @phdthesis{Wietek2001, author = {Wietek, Irina}, title = {Human Interleukin-4 binding protein epitope involved in high-affinity binding of interleukin-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3190}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {No abstract available}, subject = {Mensch}, language = {en} } @article{DuschlJahnBertlingetal.1992, author = {Duschl, Albert and Jahn, Ute and Bertling, Claudia and Sebald, Walter}, title = {A comparison of assays for the response of primary human T-cells upon stimulation with interleukin-2, interleukin-4 and interleukin-7}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-86750}, year = {1992}, abstract = {The most commonly used assay to quantitate the response of peripheral T~cells upon stimulation with growth factors is determination of incorporated (JH]TdR. We compared thls test to three other methods: 1. direct countlog of cells with a Coulter type counter as reference assay, 2. a colorimetric assay using the tetrazolium dye 3-[ 4,S-dimethylthiazol-l-yl]-2,5diphenyl tetrazolium (MTT), which is a cheap and increasingly popular non-radioactive method and 3. incorporation of the thymidine analog 5-bromo-2'-deoxyuridine detection with a monoclonal antibody on cytospins. Primary human PHA-blasts from >30 healthy individuals were stimulated with IL-2, IL-4 aod IL-7 and assayed with up to four different methods. We discuss the advantages and disadvantages of the assays used and tbe effects of differences between cell preparations. We observed no significant variations between individuals for the dose dependence, but the relative emctency of IL4 compared to IL-2 and IL-7 was variable. This was probably due to the slower response observed upon stimulation with this factor.}, subject = {T-Lymphozyt}, language = {en} }