@article{AlacevichCarloniCalameChiesaetal.2019, author = {Alacevich, Massimo and Carloni Calame, Carlo M. and Chiesa, Mauro and Montagna, Guido and Nicrosini, Oreste and Piccinini, Fulvio}, title = {Muon-electron scattering at NLO}, series = {Journal of High Energy Physics}, volume = {155}, journal = {Journal of High Energy Physics}, number = {2}, doi = {10.1007/JHEP02(2019)155}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-227777}, pages = {1-25}, year = {2019}, abstract = {We consider the process of muon-electron elastic scattering, which has been proposed as an ideal framework to measure the running of the electromagnetic coupling constant at space-like momenta and determine the leading-order hadronic contribution to the muon g-2 (MUonE experiment). We compute the next-to-leading (NLO) contributions due to QED and purely weak corrections and implement them into a fully differential Monte Carlo event generator, which is available for first experimental studies. We show representative phenomenological results of interest for the MUonE experiment and examine in detail the impact of the various sources of radiative corrections under different selection criteria, in order to study the dependence of the NLO contributions on the applied cuts. The study represents the first step towards the realisation of a high-precision Monte Carlo code necessary for data analysis.}, language = {en} }