@article{BohnertTrellaPreissetal.2022, author = {Bohnert, Simone and Trella, Stefanie and Preiß, Ulrich and Heinsen, Helmut and Bohnert, Michael and Zwirner, Johann and Tremblay, Marie-{\`E}ve and Monoranu, Camelia-Maria and Ondruschka, Benjamin}, title = {Density of TMEM119-positive microglial cells in postmortem cerebrospinal fluid as a surrogate marker for assessing complex neuropathological processes in the CNS}, series = {International Journal of Legal Medicine}, volume = {136}, journal = {International Journal of Legal Medicine}, number = {6}, doi = {10.1007/s00414-022-02863-5}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325009}, pages = {1841-1850}, year = {2022}, abstract = {Routine coronal paraffin-sections through the dorsal frontal and parieto-occipital cortex of a total of sixty cases with divergent causes of death were immunohistochemically (IHC) stained with an antibody against TMEM119. Samples of cerebrospinal fluid (CSF) of the same cases were collected by suboccipital needle-puncture, subjected to centrifugation and processed as cytospin preparations stained with TMEM119. Both, cytospin preparations and sections were subjected to computer-assisted density measurements. The density of microglial TMEM119-positive cortical profiles correlated with that of cytospin results and with the density of TMEM119-positive microglial profiles in the medullary layer. There was no statistically significant correlation between the density of medullary TMEM119-positive profiles and the cytospin data. Cortical microglial cells were primarily encountered in supragranular layers I, II, and IIIa and in infragranular layers V and VI, the region of U-fibers and in circumscribed foci or spread in a diffuse manner and high density over the white matter. We have evidence that cortical microglia directly migrate into CSF without using the glympathic pathway. Microglia in the medullary layer shows a strong affinity to the adventitia of deep vessels in the myelin layer. Selected rapidly fatal cases including myocardial infarcts and drowning let us conclude that microglia in cortex and myelin layer can react rapidly and its reaction and migration is subject to pre-existing external and internal factors. Cytospin preparations proved to be a simple tool to analyze and assess complex changes in the CNS after rapid fatal damage. There is no statistically significant correlation between cytospin and postmortem interval. Therefore, the quantitative analyses of postmortem cytospins obviously reflect the neuropathology of the complete central nervous system. Cytospins provide forensic pathologists a rather simple and easy to perform method for the global assessment of CNS affliction.}, language = {en} } @article{ZwirnerAndersBohnertetal.2021, author = {Zwirner, Johann and Anders, Sven and Bohnert, Simone and Burkhardt, Ralph and Da Broi, Ugo and Hammer, Niels and Pohlers, Dirk and Tse, Rexson and Ondruschka, Benjamin}, title = {Screening for fatal traumatic brain injuries in cerebrospinal fluid using blood-validated CK and CK-MB immunoassays}, series = {Biomolecules}, volume = {11}, journal = {Biomolecules}, number = {7}, issn = {2218-273X}, doi = {10.3390/biom11071061}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-242769}, year = {2021}, abstract = {A single, specific, sensitive biochemical biomarker that can reliably diagnose a traumatic brain injury (TBI) has not yet been found, but combining different biomarkers would be the most promising approach in clinical and postmortem settings. In addition, identifying new biomarkers and developing laboratory tests can be time-consuming and economically challenging. As such, it would be efficient to use established clinical diagnostic assays for postmortem biochemistry. In this study, postmortem cerebrospinal fluid samples from 45 lethal TBI cases and 47 controls were analyzed using commercially available blood-validated assays for creatine kinase (CK) activity and its heart-type isoenzyme (CK-MB). TBI cases with a survival time of up to two hours showed an increase in both CK and CK-MB with moderate (CK-MB: AUC = 0.788, p < 0.001) to high (CK: AUC = 0.811, p < 0.001) diagnostic accuracy. This reflected the excessive increase of the brain-type CK isoenzyme (CK-BB) following a TBI. The results provide evidence that CK immunoassays can be used as an adjunct quantitative test aid in diagnosing acute TBI-related fatalities.}, language = {en} } @article{BohnertReinertTrellaetal.2021, author = {Bohnert, Simone and Reinert, Christoph and Trella, Stefanie and Schmitz, Werner and Ondruschka, Benjamin and Bohnert, Michael}, title = {Metabolomics in postmortem cerebrospinal fluid diagnostics: a state-of-the-art method to interpret central nervous system-related pathological processes}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, issn = {0937-9827}, doi = {10.1007/s00414-020-02462-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235724}, pages = {183-191}, year = {2021}, abstract = {In the last few years, quantitative analysis of metabolites in body fluids using LC/MS has become an established method in laboratory medicine and toxicology. By preparing metabolite profiles in biological specimens, we are able to understand pathophysiological mechanisms at the biochemical and thus the functional level. An innovative investigative method, which has not yet been used widely in the forensic context, is to use the clinical application of metabolomics. In a metabolomic analysis of 41 samples of postmortem cerebrospinal fluid (CSF) samples divided into cohorts of four different causes of death, namely, cardiovascular fatalities, isoIated torso trauma, traumatic brain injury, and multi-organ failure, we were able to identify relevant differences in the metabolite profile between these individual groups. According to this preliminary assessment, we assume that information on biochemical processes is not gained by differences in the concentration of individual metabolites in CSF, but by a combination of differently distributed metabolites forming the perspective of a new generation of biomarkers for diagnosing (fatal) TBI and associated neuropathological changes in the CNS using CSF samples.}, language = {en} } @article{BohnertWirthSchmitzetal.2021, author = {Bohnert, Simone and Wirth, Christoph and Schmitz, Werner and Trella, Stefanie and Monoranu, Camelia-Maria and Ondruschka, Benjamin and Bohnert, Michael}, title = {Myelin basic protein and neurofilament H in postmortem cerebrospinal fluid as surrogate markers of fatal traumatic brain injury}, series = {International Journal of Legal Medicine}, volume = {135}, journal = {International Journal of Legal Medicine}, number = {4}, issn = {1437-1596}, doi = {10.1007/s00414-021-02606-y}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-266929}, pages = {1525-1535}, year = {2021}, abstract = {The aim of this study was to investigate if the biomarkers myelin basic protein (MBP) and neurofilament-H (NF-H) yielded informative value in forensic diagnostics when examining cadaveric cerebrospinal fluid (CSF) biochemically via an enzyme-linked immunosorbent assay (ELISA) and comparing the corresponding brain tissue in fatal traumatic brain injury (TBI) autopsy cases by immunocytochemistry versus immunohistochemistry. In 21 trauma and 19 control cases, CSF was collected semi-sterile after suboccipital puncture and brain specimens after preparation. The CSF MBP (p = 0.006) and NF-H (p = 0.0002) levels after TBI were significantly higher than those in cardiovascular controls. Immunohistochemical staining against MBP and against NF-H was performed on cortical and subcortical samples from also biochemically investigated cases (5 TBI cases/5 controls). Compared to the controls, the TBI cases showed a visually reduced staining reaction against MBP or repeatedly ruptured neurofilaments against NF-H. Immunocytochemical tests showed MBP-positive phagocytizing macrophages in CSF with a survival time of > 24 h. In addition, numerous TMEM119-positive microglia could be detected with different degrees of staining intensity in the CSF of trauma cases. As a result, we were able to document that elevated levels of MBP and NF-H in the CSF should be considered as useful neuroinjury biomarkers of traumatic brain injury.}, language = {en} } @article{BohnertSeiffertTrellaetal.2020, author = {Bohnert, Simone and Seiffert, Anja and Trella, Stefanie and Bohnert, Michael and Distel, Luitpold and Ondruschka, Benjamin and Monoranu, Camelia-Marie}, title = {TMEM119 as a specific marker of microglia reaction in traumatic brain injury in postmortem examination}, series = {International Journal of Legal Medicine}, volume = {134}, journal = {International Journal of Legal Medicine}, issn = {0937-9827}, doi = {10.1007/s00414-020-02384-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-235346}, pages = {2167-2176}, year = {2020}, abstract = {The aim of the present study was a refined analysis of neuroinflammation including TMEM119 as a useful microglia-specific marker in forensic assessments of traumatic causes of death, e.g., traumatic brain injury (TBI). Human brain tissue samples were obtained from autopsies and divided into cases with lethal TBI (n = 25) and subdivided into three groups according to their trauma survival time and compared with an age-, gender-, and postmortem interval-matched cohort of sudden cardiovascular fatalities as controls (n = 23). Brain tissue samples next to cortex contusions and surrounding white matter as well as samples of the ipsilateral uninjured brain stem and cerebellum were collected and stained immunohistochemically with antibodies against TMEM119, CD206, and CCR2. We could document the highest number of TMEM119-positive cells in acute TBI death with highly significant differences to the control numbers. CCR2-positive monocytes showed a significantly higher cell count in the cortex samples of TBI cases than in the controls with an increasing number of immunopositive cells over time. The number of CD206-positive M2 microglial cells increased survival time-dependent. After 3 days of survival, the cell number increased significantly in all four regions investigated compared with controls. In sum, we validate a specific and robustly expressed as well as fast reacting microglia marker, TMEM119, which distinguishes microglia from resident and infiltrating macrophages and thus offers a great potential for the estimation of the minimum survival time after TBI.}, language = {en} } @article{BochSpiessHeinzetal.2019, author = {Boch, Tobias and Spiess, Birgit and Heinz, Werner and Cornely, Oliver A. and Schwerdtfeger, Rainer and Hahn, Joachim and Krause, Stefan W. and Duerken, Matthias and Bertz, Hartmut and Reuter, Stefan and Kiehl, Michael and Claus, Bernd and Deckert, Peter Markus and Hofmann, Wolf-Karsten and Buchheidt, Dieter and Reinwald, Mark}, title = {Aspergillus specific nested PCR from the site of infection is superior to testing concurrent blood samples in immunocompromised patients with suspected invasive aspergillosis}, series = {Mycoses}, volume = {62}, journal = {Mycoses}, number = {11}, doi = {10.1111/myc.12983}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-214065}, pages = {1035 -- 1042}, year = {2019}, abstract = {Invasive aspergillosis (IA) is a severe complication in immunocompromised patients. Early diagnosis is crucial to decrease its high mortality, yet the diagnostic gold standard (histopathology and culture) is time-consuming and cannot offer early confirmation of IA. Detection of IA by polymerase chain reaction (PCR) shows promising potential. Various studies have analysed its diagnostic performance in different clinical settings, especially addressing optimal specimen selection. However, direct comparison of different types of specimens in individual patients though essential, is rarely reported. We systematically assessed the diagnostic performance of an Aspergillus-specific nested PCR by investigating specimens from the site of infection and comparing it with concurrent blood samples in individual patients (pts) with IA. In a retrospective multicenter analysis PCR was performed on clinical specimens (n = 138) of immunocompromised high-risk pts (n = 133) from the site of infection together with concurrent blood samples. 38 pts were classified as proven/probable, 67 as possible and 28 as no IA according to 2008 European Organization for Research and Treatment of Cancer/Mycoses Study Group consensus definitions. A considerably superior performance of PCR from the site of infection was observed particularly in pts during antifungal prophylaxis (AFP)/antifungal therapy (AFT). Besides a specificity of 85\%, sensitivity varied markedly in BAL (64\%), CSF (100\%), tissue samples (67\%) as opposed to concurrent blood samples (8\%). Our results further emphasise the need for investigating clinical samples from the site of infection in case of suspected IA to further establish or rule out the diagnosis.}, language = {en} } @article{TranGiaWechBleyetal.2015, author = {Tran-Gia, Johannes and Wech, Tobias and Bley, Thorsten and K{\"o}stler, Herbert}, title = {Model-Based Acceleration of Look-Locker T1 Mapping}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0122611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126436}, pages = {e0122611}, year = {2015}, abstract = {Mapping the longitudinal relaxation time \(T_1\) has widespread applications in clinical MRI as it promises a quantitative comparison of tissue properties across subjects and scanners. Due to the long scan times of conventional methods, however, the use of quantitative MRI in clinical routine is still very limited. In this work, an acceleration of Inversion-Recovery Look-Locker (IR-LL) \(T_1\) mapping is presented. A model-based algorithm is used to iteratively enforce an exponential relaxation model to a highly undersampled radially acquired IR-LL dataset obtained after the application of a single global inversion pulse. Using the proposed technique, a \(T_1\) map of a single slice with 1.6mm in-plane resolution and 4mm slice thickness can be reconstructed from data acquired in only 6s. A time-consuming segmented IR experiment was used as gold standard for \(T_1\) mapping in this work. In the subsequent validation study, the model-based reconstruction of a single-inversion IR-LL dataset exhibited a \(T_1\) difference of less than 2.6\% compared to the segmented IR-LL reference in a phantom consisting of vials with \(T_1\) values between 200ms and 3000ms. In vivo, the \(T_1\) difference was smaller than 5.5\% in WM and GM of seven healthy volunteers. Additionally, the \(T_1\) values are comparable to standard literature values. Despite the high acceleration, all model-based reconstructions were of a visual quality comparable to fully sampled references. Finally, the reproducibility of the \(T_1\) mapping method was demonstrated in repeated acquisitions. In conclusion, the presented approach represents a promising way for fast and accurate \(T_1\) mapping using radial IR-LL acquisitions without the need of any segmentation.}, language = {en} } @article{BrechtWeissbrichBraunetal.2012, author = {Brecht, Isabel and Weissbrich, Benedikt and Braun, Julia and Toyka, Klaus Viktor and Weishaupt, Andreas and Buttmann, Mathias}, title = {Intrathecal, Polyspecific Antiviral Immune Response in Oligoclonal Band Negative Multiple Sclerosis}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0040431}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134426}, pages = {e40431}, year = {2012}, abstract = {Background: Oligoclonal bands (OCB) are detected in the cerebrospinal fluid (CSF) in more than 95\% of patients with multiple sclerosis (MS) in the Western hemisphere. Here we evaluated the intrathecal, polyspecific antiviral immune response as a potential diagnostic CSF marker for OCB-negative MS patients. Methodology/Principal Findings: We tested 46 OCB-negative German patients with paraclinically well defined, definite MS. Sixteen OCB-negative patients with a clear diagnosis of other autoimmune CNS disorders and 37 neurological patients without evidence for autoimmune CNS inflammation served as control groups. Antibodies against measles, rubella, varicella zoster and herpes simplex virus in paired serum and CSF samples were determined by ELISA, and virus-specific immunoglobulin G antibody indices were calculated. An intrathecal antibody synthesis against at least one neurotropic virus was detected in 8 of 26 (31\%) patients with relapsing-remitting MS, 8 of 12 (67\%) with secondary progressive MS and 5 of 8 (63\%) with primary progressive MS, in 3 of 16 (19\%) CNS autoimmune and 3 of 37 (8\%) non-autoimmune control patients. Antibody synthesis against two or more viruses was found in 11 of 46 (24\%) MS patients but in neither of the two control groups. On average, MS patients with a positive antiviral immune response were older and had a longer disease duration than those without. Conclusion: Determination of the intrathecal, polyspecific antiviral immune response may allow to establish a CSF-supported diagnosis of MS in OCB-negative patients when two or more of the four virus antibody indices are elevated.}, language = {en} }