@article{LutherBrandtVylkovaetal.2023, author = {Luther, Christian H. and Brandt, Philipp and Vylkova, Slavena and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus}, title = {Integrated analysis of SR-like protein kinases Sky1 and Sky2 links signaling networks with transcriptional regulation in Candida albicans}, series = {Frontiers in Cellular and Infection Microbiology}, volume = {13}, journal = {Frontiers in Cellular and Infection Microbiology}, issn = {2235-2988}, doi = {10.3389/fcimb.2023.1108235}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-311771}, year = {2023}, abstract = {Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.}, language = {en} } @article{ButtHowardRaman2022, author = {Butt, Elke and Howard, Cory M. and Raman, Dayanidhi}, title = {LASP1 in cellular signaling and gene expression: more than just a cytoskeletal regulator}, series = {Cells}, volume = {11}, journal = {Cells}, number = {23}, issn = {2073-4409}, doi = {10.3390/cells11233817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297447}, year = {2022}, abstract = {LIM and SH3 protein 1 was originally identified as a structural cytoskeletal protein with scaffolding function. However, recent data suggest additional roles in cell signaling and gene expression, especially in tumor cells. These novel functions are primarily regulated by the site-specific phosphorylation of LASP1. This review will focus on specific phosphorylation-dependent interaction between LASP1 and cellular proteins that orchestrate primary tumor progression and metastasis. More specifically, we will describe the role of LASP1 in chemokine receptor, and PI3K/AKT signaling. We outline the nuclear role for LASP1 in terms of epigenetics and transcriptional regulation and modulation of oncogenic mRNA translation. Finally, newly identified roles for the cytoskeletal function of LASP1 next to its known canonical F-actin binding properties are included.}, language = {en} } @phdthesis{Groma2021, author = {Groma, Michaela}, title = {Identification of a novel LysR-type transcriptional regulator in \(Staphylococcus\) \(aureus\)}, doi = {10.25972/OPUS-24675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246757}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Staphylococcus aureus is a facultative pathogen which causes a variety of infections. The treatment of staphylococcal infections is complicated because the bacteria is resistant to multiple common antibiotics. S. aureus is also known to express a variety of virulence factors which modulate the host's immune response in order to colonize and invade certain host cells, leading to the host cell's death. Among the virulence factors is a LysR-type transcriptional regulator (lttr) which is required for efficient colonization of secondary organs. In a recent report, which used transposon screening on S. aureus-infected mice, it was found that the amount of a novel lttr852 mutant bacteria recovered from the kidneys was significantly lower compared to the wildtype strains. This doctoral thesis therefore focused on phenotypical and molecular characterization of lttr852. An assessment of the S. aureus biofilm formation and the hemolysis revealed that lttr852 was not involved in the regulation of these virulence processes. RNA-sequencing for potential target genes of lttr852 identified differentially expressed genes that are involved in branched chain amino-acid biosynthesis, methionine sulfoxide reductase and copper transport, as well as a reduced transcription of genes encoding urease and of components of pyrimidine nucleotides. Promoter fusion with GFP reporters as as well as OmniLog were used to identify conditions under which the lttr852 was active. The promoter studies showed that glucose and high temperatures diminish the lttr852 promoter activity in a time-dependent manner, while micro-aerobic conditions enhanced the promoter activity. Copper was found to be a limiting factor. In addition, the impact on promoter activity of the lttr852 was tested in the presence of various regulators, but no central link to the genes involved in virulence was identified. The present work, thus, showed that lttr852, a new member of the class of LysR-type transcriptional regulators in S. aureus, has an important role in the rapid adaptation of S. aureus to the changing microenvironment of the host.}, language = {en} } @article{UlbrichtNickelWeidenbachetal.2020, author = {Ulbricht, Andrea and Nickel, Lisa and Weidenbach, Katrin and Vargas Gebauer, Herman and Kießling, Claudia and F{\"o}rstner, Konrad U. and Schmitz, Ruth A.}, title = {The CARF protein MM_0565 affects transcription of the casposon-encoded cas1-solo gene in Methanosarcina mazei G{\"o}1}, series = {Biomolecules}, volume = {10}, journal = {Biomolecules}, number = {8}, issn = {2218-273X}, doi = {10.3390/biom10081161}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211097}, year = {2020}, abstract = {Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei G{\"o}1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.}, language = {en} } @article{GromaHorstDasetal.2020, author = {Groma, Michaela and Horst, Sarah A. and Das, Sudip and Huettel, Bruno and Klepsch, Maximilian and Rudel, Thomas and Medina, Eva and Fraunholz, Martin}, title = {Identification of a Novel LysR-Type Transcriptional Regulator in Staphylococcus aureus That Is Crucial for Secondary Tissue Colonization during Metastatic Bloodstream Infection}, series = {mbio}, volume = {11}, journal = {mbio}, number = {4}, doi = {10.1128/mBio.01646-20}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230473}, year = {2020}, abstract = {Staphylococcus aureus is a common cause of bacteremia that can lead to severe complications once the bacteria exit the bloodstream and establish infection in secondary organs. Despite its clinical relevance, little is known about the bacterial factors facilitating the development of these metastatic infections. Here, we used an S. aureus transposon mutant library coupled to transposon insertion sequencing (Tn-Seq) to identify genes that are critical for efficient bacterial colonization of secondary organs in a murine model of metastatic bloodstream infection. Our transposon screen identified a LysR-type transcriptional regulator (LTTR), which was required for efficient colonization of secondary organs such as the kidneys in infected mice. The critical role of LTTR in secondary organ colonization was confirmed using an isogenic mutant deficient in the expression of LTTR. To identify the set of genes controlled by LTTR, we used an S. aureus strain carrying the LTTR gene in an inducible expression plasmid. Gene expression analysis upon induction of LTTR showed increased transcription of genes involved in branched-chain amino acid biosynthesis, a methionine sulfoxide reductase, and a copper transporter as well as decreased transcription of genes coding for urease and components of pyrimidine nucleotides. Furthermore, we show that transcription of LTTR is repressed by glucose, is induced under microaerobic conditions, and required trace amounts of copper ions. Our data thus pinpoints LTTR as an important element that enables a rapid adaptation of S. aureus to the changing host microenvironment. IMPORTANCE Staphylococcus aureus is an important pathogen that can disseminate via the bloodstream and establish metastatic infections in distant organs. To achieve a better understanding of the bacterial factors facilitating the development of these metastatic infections, we used in this study a Staphylococcus aureus transposon mutant library in a murine model of intravenous infection, where bacteria first colonize the liver as the primary infection site and subsequently progress to secondary sites such as the kidney and bones. We identified a novel LysR-type transcriptional regulator (LTTR), which was specifically required by S. aureus for efficient colonization of secondary organs. We also determined the transcriptional activation as well as the regulon of LTTR, which suggests that this regulator is involved in the metabolic adaptation of S. aureus to the host microenvironment found in secondary infection sites.}, language = {en} } @article{KarlDandekar2015, author = {Karl, Stefan and Dandekar, Thomas}, title = {Convergence behaviour and control in non-linear biological networks}, series = {Scientific Reports}, volume = {5}, journal = {Scientific Reports}, number = {09746}, doi = {10.1038/srep09746}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148510}, year = {2015}, abstract = {Control of genetic regulatory networks is challenging to define and quantify. Previous control centrality metrics, which aim to capture the ability of individual nodes to control the system, have been found to suffer from plausibility and applicability problems. Here we present a new approach to control centrality based on network convergence behaviour, implemented as an extension of our genetic regulatory network simulation framework Jimena (http://stefan-karl.de/jimena). We distinguish three types of network control, and show how these mathematical concepts correspond to experimentally verified node functions and signalling pathways in immunity and cell differentiation: Total control centrality quantifies the impact of node mutations and identifies potential pharmacological targets such as genes involved in oncogenesis (e.g. zinc finger protein GLI2 or bone morphogenetic proteins in chondrocytes). Dynamic control centrality describes relaying functions as observed in signalling cascades (e.g. src kinase or Jak/Stat pathways). Value control centrality measures the direct influence of the value of the node on the network (e.g. Indian hedgehog as an essential regulator of proliferation in chondrocytes). Surveying random scale-free networks and biological networks, we find that control of the network resides in few high degree driver nodes and networks can be controlled best if they are sparsely connected.}, language = {en} } @phdthesis{Schielke2010, author = {Schielke, Stephanie}, title = {Functional and molecular characterization of FarR - a transcriptional regulator of the MarR family in Neisseria meningitidis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48550}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neisseria meningitidis is a facultatively pathogenic human commensal and strictly adapted to its niche within the human host, the nasopharynx. Not much is known about the regulatory processes required for adaptation to this environment. Therefore the role of the transcriptional regulator NMB1843, one of the two predicted regulators of the MarR family in the meningococcal genome, was investigated. As this gene displayed a high sequence homology to FarR, the Fatty acid resistance Regulator in N. gonorrhoeae, we designated the meningococcal protein FarR (NmFarR). Homology modeling of this protein revealed a dimeric structure with the characteristic winged helix-turn-helix DNA binding motif of the MarR family. NmFarR is highly conserved among meningococcal strains and expression of farR during exponential growth is controlled post-transcriptionally, being highest in the late exponential phase. By means of electrophoretic mobility shift assays (EMSAs) the direct and specific binding of FarR to the farAB promoter region was shown, comparable to its homologue in gonococci. As FarR is involved in fatty acid resistance in N. gonorrhoeae, susceptibility assays with the medium chain lauric acid (C12:0), the long chain saturated palmitic acid (C16:0) and the long chain unsaturated linoleic acid (C18:2) were performed, testing a wide variety of strains of both species. In contrast to the unusually susceptible gonococci, a high intrinsic fatty acid resistance was detected in almost all meningococcal isolates. The molecular basis for this intrinsic resistance in N. meningitidis was elucidated, showing that both a functional FarAB efflux pump system as well as an intact lipopolysaccharide (LPS) are responsible for palmitic acid resistance. However, even despite circumvention of the intrinsic resistance, FarR could not be connected with fatty acid resistance in meningococci. Instead, FarR was shown to directly and specifically repress expression of the Neisseria adhesin A (nadA), a promising vaccine candidate absent in N. gonorrhoeae. Microarray analyses verified these results and disclosed no further similarly regulated genes, rendering the FarR regulon the smallest regulon in meningococci reported until now. The exact FarR binding site within the nadA promoter region was identified as a 16 bp palindromic repeat and its influence on nadA transcription was proved by reporter gene fusion assays. This repression was also shown to be relevant for infection as farR deficient mutant strains displayed an increased attachment to epithelial cells. Furthermore, farR transcription was attested to be repressed upon contact with active complement components within human serum. Concluding, it is shown that FarR adopted a role in meningococcal host niche adaptation, holding the balance between immune evasion by repressing the highly antigenic nadA and host cell attachment via this same adhesin.}, subject = {Transkription }, language = {en} }