@phdthesis{Dagvadorj2016, author = {Dagvadorj, Nergui}, title = {Improvement of T-cell response against WT1-overexpressing leukemia by newly developed anti-hDEC205-WT1 antibody fusion proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149098}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Wilms tumor protein 1 (WT1) is a suitable target to develop an immunotherapeutic approach against high risk acute myeloid leukemia (AML), particularly their relapse after allogeneic hematopoietic stem cell transplantation (HSCT). As an intracellular protein traversing between nucleus and cytoplasm, recombinant expression of WT1 is difficult. Therefore, an induction of WT1-specific T-cell responses is mostly based on peptide vaccination as well as dendritic cell (DC) electroporation with mRNA encoding full-length protein to mount WT1-derived peptide variations presented to T cells. Alternatively, the WT1 peptide presentation could be broadened by forcing receptor-mediated endocytosis of DCs. In this study, antibody fusion proteins consisting of an antibody specific to the human DEC205 endocytic receptor and various fragments of WT1 (anti-hDEC205-WT1) were generated for a potential DC-targeted recombinant WT1 vaccine. Anti-hDEC205-WT1 antibody fusion proteins containing full-length or major parts of WT1 were not efficiently expressed and secreted due to their poor solubility and secretory capacity. However, small fragment-containing variants: anti-hDEC205-WT110-35, anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were obtained in good yields. Since three of these fusion proteins contain the most of the known immunogenic epitopes in their sequences, the anti-hDEC205-WT191-138, anti-hDEC205-WT1223-273, and anti-hDEC205-WT1324-371 were tested for their T-cell stimulatory capacities. Mature monocyte-derived DCs loaded with anti-hDEC205-WT191-138 could induce ex vivo T-cell responses in 12 of 16 blood samples collected from either healthy or HSC transplanted individuals compared to included controls (P < 0.01). Furthermore, these T cells could kill WT1-overexpressing THP-1 leukemia cells in vitro after expansion. In conclusion, alongside proving the difficulty in expression and purification of intracellular WT1 as a vaccine protein, our results from this work introduce an alternative therapeutic vaccine approach to improve an anti-leukemia immune response in the context of allogeneic HSCT and potentially beyond.}, subject = {Akute myeloische Leuk{\"a}mie}, language = {en} } @phdthesis{Pasch2016, author = {Pasch, Elisabeth}, title = {The role of SUN4 and related proteins in sperm head formation and fertility}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Spermiogenesis describes the differentiation of haploid germ cells into motile, fertilization-competent spermatozoa. During this fundamental transition the species-specific sperm head is formed, which necessitates profound nuclear restructuring coincident with the assembly of sperm-specific structures and chromatin compaction. In the case of the mouse, it is characterized by reshaping of the early round spermatid nucleus into an elongated sickle-shaped sperm head. This tremendous shape change requires the transduction of cytoskeletal forces onto the nuclear envelope (NE) or even further into the nuclear interior. LINC (linkers of nucleoskeleton and cytoskeleton) complexes might be involved in this process, due to their general function in bridging the NE and thereby physically connecting the nucleus to the peripheral cytoskeleton. LINC complexes consist of inner nuclear membrane integral SUN-domain proteins and outer nuclear membrane KASH-domain counterparts. SUN- and KASH-domain proteins are directly connected to each other within the perinuclear space, and are thus capable of transferring forces across the NE. To date, these protein complexes are known for their essential functions in nuclear migration, anchoring and positioning of the nucleus, and even for chromosome movements and the maintenance of cell polarity and nuclear shape. In this study LINC complexes were investigated with regard to their potential role in sperm head formation, in order to gain further insight into the processes occurring during spermiogenesis. To this end, the behavior and function of the testis-specific SUN4 protein was studied. The SUN-domain protein SUN4, which had received limited characterization prior to this work, was found to be exclusively expressed in haploid stages during germ cell development. In these cell stages, it specifically localized to the posterior NE at regions decorated by the manchette, a spermatid-specific structure which was previously shown to be involved in nuclear shaping. Mice deficient for SUN4 exhibited severely disorganized manchette residues and gravely misshapen sperm heads. These defects resulted in a globozoospermia-like phenotype and male mice infertility. Therefore, SUN4 was not only found to be mandatory for the correct assembly and anchorage of the manchette, but also for the correct localization of SUN3 and Nesprin1, as well as of other NE components. Interaction studies revealed that SUN4 had the potential to interact with SUN3, Nesprin1, and itself, and as such is likely to build functional LINC complexes that anchor the manchette and transfer cytoskeletal forces onto the nucleus. Taken together, the severe impact of SUN4 deficiency on the nucleocytoplasmic junction during sperm development provided direct evidence for a crucial role of SUN4 and other LINC complex components in mammalian sperm head formation and fertility.}, subject = {Maus}, language = {en} }