@phdthesis{Schweinlin2016, author = {Schweinlin, Matthias Oliver}, title = {Development of advanced human intestinal in vitro models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142571}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The main function of the small intestine is the absorption of essential nutrients, water and vitamins. Moreover, it constitutes a barrier protecting us from toxic xenobiotics and pathogens. For a better understanding of these processes, the development of intestinal in vitro models is of great interest to the study of pharmacological and pathological issues such as transport mechanisms and barrier function. Depending on the scientific questions, models of different complexity can be applied. In vitro Transwell® systems based on a porous PET-membrane enable the standardized study of transport mechanisms across the intestinal barrier as well as the investigation of the influence of target substances on barrier integrity. However, this artificial setup reflects only limited aspects of the physiology of the native small intestine and can pose an additional physical barrier. Hence, the applications of this model for tissue engineering are limited. Previously, tissue models based on a biological decellularized scaffold derived from porcine gut tissue were demonstrated to be a good alternative to the commonly used Transwell® system. This study showed that preserved biological extracellular matrix components like collagen and elastin provide a natural environment for the epithelial cells, promoting cell adhesion and growth. Intestinal epithelial cells such as Caco-2 cultured on such a scaffold showed a confluent, tight monolayer on the apical surface. Additionally, myofibroblasts were able to migrate into the scaffold supporting intestinal barrier formation. In this thesis, dendritic cells were additionally introduced to this model mimicking an important component of the immune system. This co-culture model was then successfully proven to be suitable for the screening of particle formulations developed as delivery system for cancer antigens in peroral vaccination studies. In particular, nanoparticles based on PLGA, PEG-PAGE-PLGA, Mannose-PEG-PAGE-PLGA and Chitosan were tested. Uptake studies revealed only slight differences in the transcellular transport rate among the different particles. Dendritic cells were shown to phagocytose the particles after they have passed the intestinal barrier. The particles demonstrated to be an effective carrier system to transport peptides across the intestinal barrier and therefore present a useful tool for the development of novel drugs. Furthermore, to mimic the complex structure and physiology of the gut including the presence of multiple different cell types, the Caco-2 cell line was replaced by primary intestinal cells to set up a de novo tissue model. To that end, intestinal crypts including undifferentiated stem cells and progenitor cells were isolated from human small intestinal tissue samples (jejunum) and expanded in vitro in organoid cultures. Cells were cultured on the decellularized porcine gut matrix in co-culture with intestinal myofibroblasts. These novel tissue models were maintained under either static or dynamic conditions. Primary intestinal epithelial cells formed a confluent monolayer including the major differentiated cell types positive for mucin (goblet cells), villin (enterocytes), chromogranin A (enteroendocrine cells) and lysozyme (paneth cells). Electron microscopy images depicted essential functional units of an intact epithelium, such as microvilli and tight junctions. FITC-dextran permeability and TEER measurements were used to assess tightness of the cell layer. Models showed characteristic transport activity for several reference substances. Mechanical stimulation of the cells by a dynamic culture system had a great impact on barrier integrity and transporter activity resulting in a tighter barrier and a higher efflux transporter activity. In Summary, the use of primary human intestinal cells combined with a biological decellularized scaffold offers a new and promising way to setup more physiological intestinal in vitro models. Maintenance of primary intestinal stem cells with their proliferation and differentiation potential together with adjusted culture protocols might help further improve the models. In particular, dynamic culture systems and co culture models proofed to be a first crucial steps towards a more physiological model. Such tissue models might be useful to improve the predictive power of in vitro models and in vitro in vivo correlation (IVIVC) studies. Moreover, these tissue models will be useful tools in preclinical studies to test pharmaceutical substances, probiotic active organisms, human pathogenic germs and could even be used to build up patient-specific tissue model for personalized medicine.}, subject = {Tissue Engineering}, language = {en} } @phdthesis{Stuckensen2016, author = {Stuckensen, Kai}, title = {Fabrication of hierarchical cell carrier matrices for tissue regeneration by directional solidification}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-145510}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {The key hypothesis of this work represented the question, if mimicking the zonal composition and structural porosity of musculoskeletal tissues influences invading cells positively and leads to advantageous results for tissue engineering. Conventional approaches in tissue engineering are limited in producing monolithic "scaffolds" that provide locally variating biological key signals and pore architectures, imitating the alignment of collagenous fibres in bone and cartilage tissues, respectively. In order to fill this gap in available tissue engineering strategies, a new fabrication technique was evolved for the production of scaffolds to validate the hypothesis. Therefore, a new solidification based platform procedure was developed. This process comprises the directional solidification of multiple flowable precursors that are "cryostructured" to prepare a controlled anisotropic pore structure. Porous scaffolds are attained through ice crystal removal by lyophilisation. Optionally, electrostatic spinning of polymers may be applied to provide an external mesh on top or around the scaffolds. A consolidation step generates monolithic matrices from multi zonal structures. To serve as matrix for tissue engineering approaches or direct implantation as medical device, the scaffold is sterilized. An Adjustable Cryostructuring Device (ACD) was successively developed; individual parts were conceptualized by computer aided design (CAD) and assembled. During optimisation, a significant performance improvement of the ACDs accessible external temperature gradient was achieved, from (1.3 ± 0.1) K/mm to (9.0 ± 0.1) K/mm. Additionally, four different configurations of the device were made available that enabled the directional solidification of collagenous precursors in a highly controlled manner with various sample sizes and shapes. By using alginate as a model substance the process was systematically evaluated. Cryostructuring diagraphs were analysed yielding solidification parameters, which were associated to pore sizes and alignments that were determined by image processing. Thereby, a precise control over pore size and alignment through electrical regulation of the ACD could be demonstrated. To obtain tissue mimetic scaffolds for the musculoskeletal system, collagens and calcium phosphates had to be prepared to serve as raw materials. Extraction and purification protocols were established to generate collagen I and collagen II, while the calcium phosphates brushite and hydroxyapatite were produced by precipitation reactions. Besides the successive augmentation of the ACD also an optimization of the processing steps was crucial. Firstly, the concentrations and the individual behaviour of respective precursor components had to be screened. Together with the insights gained by videographic examination of solidifying collagen solutions, essential knowledge was gained that facilitated the production of more complex scaffolds. Phenomena of ice crystal growth during cryostructuring were discussed. By evolutionary steps, a cryostructuring of multi-layered precursors with consecutive anisotropic pores could be achieved and successfully transferred from alginate to collagenous precursors. Finally, very smooth interfaces that were hardly detectable by scanning electron microscopy (SEM) could be attained. For the used collagenous systems, a dependency relation between adjustable processing parameters and different resulting solidification morphologies was created. Dehydrothermal-, diisocyanate-, and carbodiimide- based cross linking methods were evaluated, whereby the "zero length" cross linking by carbodiimide was found to be most suitable. Afterwards, a formulation for the cross linking solution was elaborated, which generated favourable outcomes by application inside a reduced pressure apparatus. As a consequence, a pore collapse during wet chemical cross linking could be avoided. Complex monolithic scaffolds featuring continuous pores were fabricated that mimicked structure and respective composition of different areas of native tissues by the presence of biochemical key stimulants. At first, three types of bone scaffolds were produced from collagen I and hydroxyapatite with appropriate sizes to fit critical sized defects in rat femurs. They either featured an isotropic or anisotropic porosity and partly also contained glycosaminoglycans (GAGs). Furthermore, meniscus scaffolds were prepared by processing two precursors with biomimetic contents of collagen I, collagen II and GAGs. Here, the pore structures were created under boundary conditions, which allowed an ice crystal growth that was nearly orthogonal to the external temperature gradient. Thereby, the preferential alignment of collagen fibres in the natural meniscus tissue could be mimicked. Those scaffolds owned appropriate sizes for cell culture in well plates or even an authentic meniscus shape and size. Finally, osteochondral scaffolds, sized to either fit well plates or perfusion reactors for cell culture, were fabricated to mimic the composition of subchondral bone and different cartilage zones. Collagen I and the resorbable calcium phosphate brushite were used for the subchondral zone, whereas the cartilage zones were composed out of collagen I, collagen II and tissue mimetic contents of GAGs. The pore structure corresponded to the one that is dominating the volume of natural osteochondral tissue. Energy dispersive X-ray spectroscopy (EDX) and SEM were used to analyse the composition and pore structure of the individual scaffold zones, respectively. The cross section pore diameters were determined to (65 ± 25) µm, (88 ± 35) µm and(93 ± 42) µm for the anisotropic, the isotropic and GAG containing isotropic bone scaffolds. Furthermore, the meniscus scaffolds showed pore diameters of (93 ± 21) µm in the inner meniscus zone and (248 ± 63) µm inside the outer meniscus zone. Pore sizes of (82 ± 25) µm, (83 ± 29) µm and (85 ± 39) µm were present inside the subchondral, the lower chondral and the upper chondral zone of osteochondral scaffolds. Depending on the fabrication parameters, the respective scaffold zones were also found to feature a specific micro- and nanostructure at their inner surfaces. Degradation studies were carried out under physiological conditions and resulted in a mean mass loss of (0.52 ± 0.13) \%, (1.56 ± 0.10) \% and (0.80 ± 0.10) \% per day for bone, meniscus and osteochondral scaffolds, respectively. Rheological measurements were used to determine the viscosity changes upon cooling of different precursors. Micro computer tomography (µ-CT) investigations were applied to characterize the 3D microstructure of osteochondral scaffolds. To obtain an osteochondral scaffold with four zones of tissue mimetic microstructure alignment, a poly (D, L-lactide-co-glycolide) mesh was deposited on the upper chondral zone by electrostatic spinning. In case of the bone scaffolds, the retention / release capacity of bone morphogenetic protein 2 (BMP-2) was evaluated by an enzyme linked immunosorbent assay (ELISA). Due to the high presence of attractive BMP binding sites, only less than 0.1 \% of the initially loaded cytokine was released. The suitability of combining the cryostructuring process with 3D powder printed calcium phosphate substrates was evaluated with osteochondral scaffolds, but did not appear to yield more preferable results than the non-combined approach. A new custom build confined compression setup was elaborated together with a suitable evaluation procedure for the mechanical characterisation under physiological conditions. For bone and cartilage scaffolds, apparent elastic moduli of (37.6 ± 6.9) kPa and (3.14 ± 0.85) kPa were measured. A similar behaviour of the scaffolds to natural cartilage and bone tissue was demonstrated in terms of elastic energy storage. Under physiological frequencies, less than 1.0 \% and 0.8 \% of the exerted energy was lost for bone and cartilage scaffolds, respectively. With average relaxation times of (0.613 ± 0.040) sec and (0.815 ± 0.077) sec, measured for the cartilage and bone scaffolds, they respond four orders of magnitude faster than the native tissues. Additionally, all kinds of produced scaffolds were able to withstand cyclic compression at un-physiological frequencies as high as 20 Hz without a loss in structural integrity. With the presented new method, scaffolds could be fabricated whose extent in mimicking of native tissues exceeded the one of scaffolds producible by state of the art methods. This allowed a testing of the key hypothesis: The biological evaluation of an anisotropic pore structure in vivo revealed a higher functionality of immigrated cells and led finally to advantageous healing outcomes. Moreover, the mimicking of local compositions in combination with a consecutive anisotropic porosity that approaches native tissue structures could be demonstrated to induce zone specific matrix remodelling in stem cells in vitro. Additionally, clues for a zone specific chondrogenic stem cell differentiation were attained without the supplementation of growth factors. Thereby, the hypothesis that an increased approximation of the hierarchically compositional and structurally anisotropic properties of musculoskeletal tissues would lead to an improved cellular response and a better healing quality, could be confirmed. With a special focus on cell free in situ tissue engineering approaches, the insights gained within this thesis may be directly transferred to clinical regenerative therapies.}, subject = {Tissue Engineering}, language = {en} }