@article{DrehmannMilanosSchaeferetal.2023, author = {Drehmann, Paul and Milanos, Sinem and Schaefer, Natascha and Kasaragod, Vikram Babu and Herterich, Sarah and Holzbach-Eberle, Ulrike and Harvey, Robert J. and Villmann, Carmen}, title = {Dual role of dysfunctional Asc-1 transporter in distinct human pathologies, human startle disease, and developmental delay}, series = {eNeuro}, volume = {10}, journal = {eNeuro}, number = {11}, doi = {10.1523/ENEURO.0263-23.2023}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-349947}, year = {2023}, abstract = {Human startle disease is associated with mutations in distinct genes encoding glycine receptors, transporters or interacting proteins at glycinergic synapses in spinal cord and brainstem. However, a significant number of diagnosed patients does not carry a mutation in the common genes GLRA1, GLRB, and SLC6A5. Recently, studies on solute carrier 7 subfamily 10 (SLC7A10; Asc-1, alanine-serine-cysteine transporter) knock-out (KO) mice displaying a startle disease-like phenotype hypothesized that this transporter might represent a novel candidate for human startle disease. Here, we screened 51 patients from our patient cohort negative for the common genes and found three exonic (one missense, two synonymous), seven intronic, and single nucleotide changes in the 5′ and 3′ untranslated regions (UTRs) in Asc-1. The identified missense mutation Asc-1\(^{G307R}\) from a patient with startle disease and developmental delay was investigated in functional studies. At the molecular level, the mutation Asc-1\(^{G307R}\) did not interfere with cell-surface expression, but disrupted glycine uptake. Substitution of glycine at position 307 to other amino acids, e.g., to alanine or tryptophan did not affect trafficking or glycine transport. By contrast, G307K disrupted glycine transport similar to the G307R mutation found in the patient. Structurally, the disrupted function in variants carrying positively charged residues can be explained by local structural rearrangements because of the large positively charged side chain. Thus, our data suggest that SLC7A10 may represent a rare but novel gene associated with human startle disease and developmental delay.}, language = {en} } @article{HeckerGruenerHartmannsbergeretal.2023, author = {Hecker, Katharina and Gr{\"u}ner, Julia and Hartmannsberger, Beate and Appeltshauser, Luise and Villmann, Carmen and Sommer, Claudia and Doppler, Kathrin}, title = {Different binding and pathogenic effect of neurofascin and contactin-1 autoantibodies in autoimmune nodopathies}, series = {Frontiers in Immunology}, volume = {14}, journal = {Frontiers in Immunology}, doi = {10.3389/fimmu.2023.1189734}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-320395}, year = {2023}, abstract = {Introduction IgG4 autoantibodies against paranodal proteins are known to induce acute-onset and often severe sensorimotor autoimmune neuropathies. How autoantibodies reach their antigens at the paranode in spite of the myelin barrier is still unclear. Methods We performed in vitro incubation experiments with patient sera on unfixed and unpermeabilized nerve fibers and in vivo intraneural and intrathecal passive transfer of patient IgG to rats, to explore the access of IgG autoantibodies directed against neurofascin-155 and contactin-1 to the paranodes and their pathogenic effect. Results We found that in vitro incubation resulted in weak paranodal binding of anti-contactin-1 autoantibodies whereas anti-neurofascin-155 autoantibodies bound to the nodes more than to the paranodes. After short-term intraneural injection, no nodal or paranodal binding was detectable when using anti-neurofascin-155 antibodies. After repeated intrathecal injections, nodal more than paranodal binding could be detected in animals treated with anti-neurofascin-155, accompanied by sensorimotor neuropathy. In contrast, no paranodal binding was visible in rats intrathecally injected with anti-contactin-1 antibodies, and animals remained unaffected. Conclusion These data support the notion of different pathogenic mechanisms of anti-neurofascin-155 and anti-contactin-1 autoantibodies and different accessibility of paranodal and nodal structures.}, language = {en} }