@phdthesis{Mueller2023, author = {M{\"u}ller, Dominik Dennis}, title = {Laborbasierte Nano-Computertomographie mit hoher Energie f{\"u}r die Materialcharakterisierung und Halbleiterpr{\"u}fung in Simulation und Anwendung}, doi = {10.25972/OPUS-31338}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-313380}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Verschiedene Konzepte der R{\"o}ntgenmikroskopie haben sich mittlerweile im Labor etabliert und erm{\"o}glichen heute aufschlussreiche Einblicke in eine Vielzahl von Probensystemen. Der „Labormaßstab" bezieht sich dabei auf Analysemethoden, die in Form von einem eigenst{\"a}ndigen Ger{\"a}t betrieben werden k{\"o}nnen. Insbesondere sind sie unabh{\"a}ngig von der Strahlerzeugung an einer Synchrotron-Großforschungseinrichtung und einem sonst kilometergroßen Elektronen-speicherring. Viele der technischen Innovationen im Labor sind dabei ein Transfer der am Synchrotron entwickelten Techniken. Andere wiederum basieren auf der konsequenten Weiterentwicklung etablierter Konzepte. Die Aufl{\"o}sung allein ist dabei nicht entscheidend f{\"u}r die spezifische Eignung eines Mikroskopiesystems im Ganzen. Ebenfalls sollte das zur Abbildung eingesetzte Energiespektrum auf das Probensystem abgestimmt sein. Zudem muss eine Tomographieanalage zus{\"a}tzlich in der Lage sein, die Abbildungsleistung bei 3D-Aufnahmen zu konservieren. Nach einem {\"U}berblick {\"u}ber verschiedene Techniken der R{\"o}ntgenmikroskopie konzentriert sich die vorliegende Arbeit auf quellbasierte Nano-CT in Projektionsvergr{\"o}ßerung als vielversprechende Technologie zur Materialanalyse. Hier k{\"o}nnen h{\"o}here Photonenenergien als bei konkurrierenden Ans{\"a}tzen genutzt werden, wie sie von st{\"a}rker absorbierenden Proben, z. B. mit einem hohen Anteil von Metallen, zur Untersuchung ben{\"o}tigt werden. Das bei einem ansonsten idealen CT-Ger{\"a}t aufl{\"o}sungs- und leistungsbegrenzende Bauteil ist die verwendete R{\"o}ntgen-quelle. Durch konstruktive Innovationen sind hier die gr{\"o}ßten Leistungsspr{\"u}nge zu erwarten. In diesem Zuge wird er{\"o}rtert, ob die Brillanz ein geeignetes Maß ist, um die Leistungsf{\"a}higkeit von R{\"o}ntgenquellen zu evaluieren, welchen Schwierigkeiten die praktische Messung unterliegt und wie das die Vergleichbarkeit der Werte beeinflusst. Anhand von Monte-Carlo-Simulationen wird gezeigt, wie die Brillanz verschiedener Konstruktionen an R{\"o}ntgenquellen theoretisch bestimmt und miteinander verglichen werden kann. Dies wird am Beispiel von drei modernen Konzepten von R{\"o}ntgenquellen demonstriert, welche zur Mikroskopie eingesetzt werden k{\"o}nnen. Im Weiteren besch{\"a}ftigt sich diese Arbeit mit den Grenzen der Leistungsf{\"a}higkeit von Transmissionsr{\"o}ntgenquellen. Anhand der verzahnten Simulation einer Nanofokus-R{\"o}ntgenquelle auf Basis von Monte-Carlo und FEM-Methoden wird untersucht, ob etablierte Literatur¬modelle auf die modernen Quell-konstruktionen noch anwendbar sind. Aus den Simulationen wird dann ein neuer Weg abgeleitet, wie die Leistungsgrenzen f{\"u}r Nanofokus-R{\"o}ntgenquellen bestimmt werden k{\"o}nnen und welchen Vorteil moderne strukturierte Targets dabei bieten. Schließlich wird die Konstruktion eines neuen Nano-CT-Ger{\"a}tes im Labor-maßstab auf Basis der zuvor theoretisch besprochenen Nanofokus-R{\"o}ntgenquelle und Projektionsvergr{\"o}ßerung gezeigt, sowie auf ihre Leistungsf{\"a}higkeit validiert. Es ist spezifisch darauf konzipiert, hochaufl{\"o}sende Messungen an Materialsystemen in 3D zu erm{\"o}glichen, welche mit bisherigen Methoden limitiert durch mangelnde Aufl{\"o}sung oder Energie nicht umsetzbar waren. Daher wird die praktische Leistung des Ger{\"a}tes an realen Proben und Fragestellungen aus der Material¬wissenschaft und Halbleiterpr{\"u}fung validiert. Speziell die gezeigten Messungen von Fehlern in Mikrochips aus dem Automobilbereich waren in dieser Art zuvor nicht m{\"o}glich.}, subject = {Computertomografie}, language = {de} } @phdthesis{Vaegler2016, author = {Vaegler, Sven}, title = {Entwicklung eines neuen vorwissensbasierten Bildrekonstruktionsalgorithmus f{\"u}r die Cone-Beam-CT Bildgebung in der Strahlentherapie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-137445}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {In der heutigen Strahlentherapie kann durch eine am Linearbeschleuniger integrierte R{\"o}ntgenr{\"o}hre eine 3D-Bildgebung vor der Bestrahlung durchgef{\"u}hrt werden. Die sogenannte Kegel-Strahl-CT (Cone-Beam-CT, CBCT) erlaubt eine pr{\"a}zise Verifikation der Patientenlagerung sowie ein Ausgleich von Lagerungsungenauigkeiten. Dem Nutzen der verbesserten Patientenlagerung steht jedoch bei t{\"a}glicher Anwendung eine erh{\"o}hte, nicht zu vernachl{\"a}ssigbare Strahlenexposition des Patienten gegen{\"u}ber. Eine Verringerung des Dosisbeitrages bei der CBCT-Bildgebung l{\"a}sst sich durch Reduzierung des Stroms zur Erzeugung der R{\"o}ntgenstrahlung sowie durch Verringerung der Anzahl an Projektionen erreichen. Die so aufgenommen Projektionen lassen sich dann aber nur durch aufwendige Rekonstruktionsverfahren zu qualitativ hochwertigen Bilddatens{\"a}tzen rekonstruieren. Ein Verfahren, dass f{\"u}r die Rekonstruktion vorab vorhandene Vorwissensbilder verwendet, ist der Prior-Image- Constrained-Compressed-Sensing-Rekonstruktionsalgorithmus (PICCS). Die Rekonstruktionsergebnisse des PICCS-Verfahrens {\"u}bertreffen die Ergebnisse des auf den konventionellen Feldkamp-Davis-Kress-Algorithmus (FDK) basierenden Verfahrens, wenn nur eine geringe Anzahl an Projektionen zur Verf{\"u}gung steht. Allerdings k{\"o}nnen bei dem PICCS-Verfahren derzeit keine großen Variationen in den Vorwissensbildern ber{\"u}cksichtigt werden und f{\"u}hren zu einer geringeren Bildqualit{\"a}t. Diese Variationen treten insbesondere durch anatomische Ver{\"a}nderungen wie Tumorverkleinerung oder Gewichtsver{\"a}nderungen auf. Das Ziel der vorliegenden Arbeit bestand folglich darin, einen neuen vorwissensbasierten Rekonstruktionsalgorithmus zu entwickeln, der auf Basis des PICCS-Verfahrens zus{\"a}tzlich die Verwendung von lokalen Verl{\"a}sslichkeitsinformationen {\"u}ber das Vorwissensbild erm{\"o}glicht, um damit die Variationen in den Vorwissensbildern bei der Rekonstruktion entsprechend ber{\"u}cksichtigen zu k{\"o}nnen. Die grundlegende Idee des neu entwickelten Rekonstruktionsverfahrens ist die Annahme, dass die Vorwissensbilder aus Bereichen mit kleinen und großen Variationen bestehen. Darauf aufbauend wird eine Gewichtungsmatrix erzeugt, die die St{\"a}rke der Variationen des Vorwissens im Rekonstruktionsalgorithmus ber{\"u}cksichtigt. In Machbarkeitsstudien wurde das neue Verfahren hinsichtlich der Verbesserung der Bildqualit{\"a}t unter Ber{\"u}cksichtigung g{\"a}ngiger Dosisreduzierungsstrategien untersucht. Dazu z{\"a}hlten die Reduktion der Anzahl der Projektionen, die Akquisition von Projektionen mit kleinerer Fluenz sowie die Verkleinerung des Akquisitionsbereiches. Die Studien erfolgten an einem Computerphantom sowie insbesondere an experimentellen Daten, die mit dem klinischen CBCT aufgenommen worden sind. Zum Vergleich erfolgte die Rekonstruktion mit dem Standardverfahren basierend auf der gefilterten R{\"u}ckprojektion, dem Compressed Sensing- sowie dem konventionellen PICCS-Verfahren. Das neue Verfahren konnte in den untersuchten F{\"a}llen Bilddatens{\"a}tze mit verbesserter bis ausgezeichneter Qualit{\"a}t rekonstruieren, sogar dann, wenn nur eine sehr geringe Anzahl an Projektionen oder nur Projektionen mit starkem Rauschen zur Verf{\"u}gung standen. Demgegen{\"u}ber wiesen die Rekonstruktionsergebnisse der anderen Algorithmen starke Artefakte auf. Damit er{\"o}ffnet das neu entwickelte Verfahren die M{\"o}glichkeit durch die Integration von Zuverl{\"a}ssigkeitsinformationen {\"u}ber die vorhandenen Vorwissensbildern in den Rekonstruktionsalgorithmus, den Dosisbeitrag bei der t{\"a}glichen CBCT-Bildgebung zu minimieren und eine ausgezeichnete Bildqualit{\"a}t erzielen zu k{\"o}nnen.}, subject = {Strahlentherapie}, language = {de} }