@phdthesis{Foley2001, author = {Foley, Paul Bernard}, title = {Beans, roots and leaves}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181975}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The author presents the first detailed review of the pharmacological therapy of parkinsonism from ancient times until the near present (1980). It is not clear whether parkinsonism as it is now defined - a progressive neurodegenerative disorder of the basal ganglia characterized by sharply reduced striatal dopamine levels, particularly in the striatum - has always affected a significant minority of aged persons, but suggestive evidence to this effect in the older literature is reviewed. The major discussion commences, however, with the administration of various plant alkaloids to parkinsonian patients in the second half of the 19th century. Antiparkinsonian therapy since this time may be divided into a number of phases: 1. The employment of alkaloids derived from solanaceous plants: initially hyoscyamine, then hyoscine/scopolamine and atropine. The discovery and characterization of these alkaloids, and the gradual recognition that other pharmacologically useful solanaceous alkaloids (such as duboisine) were identical with one or other of these three compounds, is discussed. 2. With the outbreak of encephalitis lethargica following the First World War, parkinsonian patient numbers increased dramatically, leading to a multiplicity of new directions, including the use of another solanaceous plant, stramonium, of extremely high atropine doses, and of harmala alkaloids. 3. The so-called "Bulgarian treatment" was popularized in western Europe in the mid-1930s. It was also a belladonna alkaloid-based therapy, but associated with greater efficacy and fewer side effects. This approach, whether as actual plant extracts or as defined combinations of belladonna alkaloids, remained internationally dominant until the end of the 1940s. 4. Synthetic antiparkinsonian agents were examined following the Second World War, with the aim of overcoming the deficiencies of belladonna alkaloid therapy. These agents fell into two major classes: synthetic anticholinergic (= antimuscarinic) agents, such as benzhexol, and antihistaminergic drugs, including diphenhydramine. These agents were regarded as more effective than plant-based remedies, but certainly not as cures for the disease. 5. A complete change in direction was heralded by the discovery in 1960 of the striatal dopamine deficit in parkinsonism. This led to the introduction of L-DOPA therapy for parkinsonism, the first approach directed against an identified physiological abnormality in the disorder. 6. Subsequent developments have thus far concentrated on refinement or supplementation of the L-DOPA effect. Recent attempts to develop neuroprotective or -restorative approaches are also briefly discussed. The thesis also discusses the mechanisms by which the various types of antiparkinsonian agent achieved their effects, and also the problems confronting workers at various periods in the design and assessment of novel agents. The impact of attitudes regarding the etiology and nature of parkinsonism, particularly with regard to symptomatology, is also considered. Finally, the history of antiparkinsonian therapy is discussed in context of the general development of both clinical neurology and fundamental anatomical, physiological and biochemical research. In particular, the deepening understanding of the neurochemical basis of central nervous system function is emphasized, for which reason the history of dopamine research is discussed in some detail. This history of antiparkinsonian therapy also illustrates the fact that the nature of experimental clinical pharmacology has markedly changed throughout this period: No longer the preserve of individual physicians, it is now based firmly on fundamental laboratory research, the clinical relevance of which is not always immediately apparent, and which is only later examined in (large scale) clinical trials. It is concluded that antiparkinsonian therapy was never irrational or without basis, but has always been necessarily rooted in current knowledge regarding neural and muscular function. The achievements of L-DOPA therapy, the first successful pharmacological treatment for a neurodegenerative disorder, derived from the fruitful union of the skills and contributions of different types by laboratory scientists, pharmacologists and clinicians.}, subject = {Parkinson-Krankheit}, language = {en} } @phdthesis{Ilko2015, author = {Ilko, David}, title = {The use of charged aerosol detection for the analysis of excipients and active pharmaceutical ingredients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118377}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The Corona® charged aerosol detector (CAD) is an aerosol-based detector first de-scribed by Dixon and Peterson in 2002. It is capable of detecting compounds inde-pendent from their physico-chemical properties presumed the analyte is sufficiently non-volatile. Consequently, the CAD is often applied to the analysis of substances that do not possess a suitable UV chromophore. Major drawbacks are however, the detector signal is non-linear and depending on the content of organic solvent in the mobile phase. This thesis tried to explore possible applications of the CAD for pharmaceutical analysis. Therefore, several substances from different compound classes were in-vestigated. Newly developed or existing methods were validated. Thus the perfor-mance of the CAD could be examined. Both assay and impurity determination were evaluated for their compliance with ICH Q2(R1) "Validation of Analytical Proce-dures" and the "Technical Guide for the Elaboration of Monographs". In the course of the establishment of reference substances at the EDQM, a generic screening method for the identification of organic and inorganic pharmaceutical counterions was needed. An HPLC-CAD method developed by Zhang et al. was therefore investigated for its suitability for pharmacopoeial purpose. Method valida-tion was performed. It was found that 23 ions could be separated and detected. Iden-tification was achieved via retention time of an authentic standard of the corre-sponding ions. Alternatively, peak assignment was performed by determination of the exact mass using TOF-MS. Ions could be quantified as impurities or for stoichi-ometric purpose. For the impurity control in topiramate, the performance characterstics of the CAD were compared to that of an ELSD. CAD was superior to ELSD in terms of repeata-bility, sensitivity and linearity. However, impurities could be quantified with satisfac-tory accuracy with both detectors. The application of the ELSD was not feasible due to non-reproducible spike peaks eluting after the principle peak in the chromatogram of the test solution. One of the impurities, topiramate impurity A (diacetonide), gave no or a vastly diminished signal in the ELSD and the CAD, respectively. It is evapo-rated during the detection process due to its relatively high vapor pressure. The re-sponse could be enhanced by a factor of nine via post-column addition of acetoni-trile and a lower nebulizer temperature. As the response of topiramate impurity A was still about thousand-fold lower than the response of all other impurities, its quantification was not feasible. Additionally, the HPLC-CAD was successfully vali-dated as an assay procedure for topiramate. There seems to be a great potential in the application of the CAD to the analysis of excipients as most compounds do not possess a suitable UV chromophore. Here, a simple and rapid HPLC-CAD method for the determination of polidocanol (PD) was developed. The method was successfully validated as a potential assay procedure for the Ph. Eur. as none is described in either of the two PD monographs. The same method was applied to the determination of the PD release from a pharmaceutical polymer matrix. A method for the determination of the fatty acid (FA) composition of polysorbate 80 (PS80) was developed and validated. Using the CAD and mass spectrometry, we were able to identify two new FAs in 16 batches from four manufacturers. All batch-es complied with pharmacopoeial specification. Furthermore, the overall composi-tion of the different PS80 species ("fingerprinting") and the peroxide content were determined. In addition to the chemical characterization, functionality related charac-teristics (FRCs) were determined. Correlations between chemical composition and FRCs were found. The validation data of the above mentioned methods suggests that the CAD repre-sents a viable detection technique for pharmaceutical analysis. The CAD was suffi-ciently sensitive for non-volatile analytes. Impurity control down to concentrations of 0.05 or 0.03\%, as demanded by ICH Q3A (R2), is achievable. However, the response of semi-volatile compounds may be drastically diminished. It could be confirmed that the response of the CAD is linear when the range does not exceed two orders of magnitude. Exceptions may be observed depending on the actual method setup. When the measuring range is sufficiently narrow, quantification can be done using single-point calibration which is common practice in pharmaceutical anlysis. Impuri-ties may also be quantified against a single calibration solution. However, correction factors may be needed and the accuracy is considerably lower compared to an as-say method. If a compound is to be quantified over a large concentration range, log-log transformation of the calibration curve is needed and a decreased accuracy has to be accepted.}, subject = {Analyse}, language = {en} } @phdthesis{Welker2013, author = {Welker, Armin}, title = {Theoretische und experimentelle Wirkstoffsuche an den Zielproteinen SARS-Coronavirus-Papain-like-Protease und Elongin-C}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72500}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Um Wirkstoffe gegen das SARS-Coronavirus zu erhalten, wurden in dieser Arbeit Proteaseinhibitoren gegen die SARS-CoV-PLpro entwickelt. Ein Ansatz um neue Wirkstoffe gegen HIV zu finden, wurde {\"u}ber eine versuchte Blockade von Elongin-C beschritten. Bei der computergest{\"u}tzten Suche nach neuen SARS-CoV-PLpro-Inihibitoren wurde zun{\"a}chst die strukturell bekannte Ligand-Bindetasche analysiert, und nach Evaluation des Dockingprozesses wurden mehrere Screeningprojekte an den R{\"o}ntgenkristallstrukturen 3E9S und 3MJ5 durchgef{\"u}hrt. Von 24 kommerziell erworbenen Screening-Verbindungen riefen 7 eine St{\"o}rung des beim Enzymassay gemessenen Fluoreszenzsignals hervor (Quenching bzw. Eigenfluoreszenz). Letztlich konnte den beiden inhibitorisch aktiven Imidazolderivaten B6 und B9 je ein IC50-Wert von etwa 50 µM zugewiesen werden. Das Imidazolscaffold er{\"o}ffnet damit eine neue Substanzklasse zur Inhibition der SARS-CoV-PLpro. Im pr{\"a}parativ-chemischen Teil des SARS-Projekts wurden weitere Substanzklassen dargestellt, von denen die Inhibitoren vom Benzamid-Typ und Isoindolin-Typ eine Hemmung im einstelligen Mikromolaren Bereich (IC50) zeigten. Die Isoindolin-Derivate sind damit eine weitere, in dieser Arbeit entwickelte Leitstruktur zur Hemmung der SARS-CoV-PLpro. Bei der Suche nach einem Wirkstoff gegen HIV-1 wurde die neue Zielstruktur Elongin-C zur Inhibition durch niedermolekulare Liganden ausgew{\"a}hlt. Vier virtuelle Screeningprojekte f{\"u}hrten zur Bestellung von 27 Verbindungen. Die durchgef{\"u}hrten Untersuchungen lassen noch keine abschließende Beurteilung der Ergebnisse zu, und der bisherige Zellassay wird noch durch spezifischere Methoden zur Bestimmung einer Ligandbindung an Elongin-C erg{\"a}nzt werden. Falls es gelingt, einer der Verbindungen Elongin-C-blockierende Aktivit{\"a}t nachzuweisen, sind aufgrund des Eingriffs in einen zellul{\"a}ren Mechanismus neben der anti-HIV-Wirkung noch weitere pharmakologische Effekte denkbar, und das therapeutische Potenzial eines solchen Stoffs k{\"o}nnte in zuk{\"u}nftigen Experimenten erforscht werden.}, subject = {Proteaseinhibitor}, language = {de} }