@phdthesis{Blocka2019, author = {Blocka, Joanna}, title = {Molecular mechanisms underlying Woodhouse-Sakati syndrome: characterization of DCAF17 with specific, polyclonal antibodies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-174766}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Woodhouse-Sakati syndrome (WSS) is a rare multisystemic, autosomal recessive disease. The underlying cause of WSS are mutations of C2orf37 gene, which result in a truncated protein. Little is known about the function of C2orf37 (DDB1-CUL4A-associated factor 17, DCAF17) apart from it being part of the DDB1-CUL4-ROC1 E3 ubiquitin ligase complex, specifically binding directly to DDB1 and serving as a substrate recruiter for E3. There are two major isoforms of DCAF17: beta (65 kDa, 520 amino acids) and alpha (27 kDa, 240 amino acids), which is a C-terminal part of beta. The intracellular localization of the WSS protein is thought to be primarily the nucleolus. A murine ortholog protein was found to be expressed in all tissues with a relatively higher expression in the brain, liver, and skin.The aim of this work was to investigate DCAF17 in HeLa cells in more detail, in particular the redistribution of both WSS isoforms on the subcellular and -nuclear level as well as their chemical features. For these experiments, I developed, through recombinant expression and affinity purification, a specific polyclonal antibody against a WSS-epitope 493-520. Furthermore, three other specific polyclonal antibodies were obtained through affinity purification with help of commercially produced high-affinity epitope peptides.By means of these antibodies, I determined- through immunofluorescence and subcellular protein fractionation- that, apart from the redistribution of the WSS protein within the non-soluble = chromatin-bound nuclear fraction, a significant amount of both WSS isoforms is present in the soluble nuclear fraction. Indeed, treatment of purified nuclear envelopes with an increasing concentration of NaCl as well as urea confirmed a non-covalent binding of the WSS protein to the nuclear envelope with the detachment ofbeta-WSS at a lower NaCl concentration than alpha-WSS. In regard to the chromatin-bound WSS protein, I performed hydrolysis of nuclear and nucleolar extract with DNase and RNase. The results indicate that the WSS protein is bound to DNA but not RNA, with alpha-WSS being possibly located more abundantly in the nucleolus, whereas beta-WSS within other subnuclear departments. Furthermore, in all the above-mentioned experiments, a presence of an 80-kDa protein, which specifically reacted with the polyclonal high-affinity antibodies and showed similar redistribution and chemical features as alpha- and beta-WSS, was observed. In order to investigate whether this protein is a posttranslationally modified WSS isoform, I performed deglycosylation and dephosphorylation of nuclear extract, which showed no disappearance or change in abundance of the 80-kDa band on Western blot. While other ways of poststranslational modification cannot be excluded as the cause of occurrence of the 80-kDa protein, an existence of a third, yet undescribed, major isoform is also conceivable. Summarizing, this work contributed to a deeper characterization of the WSS protein, which can help future investigators in developing new experimental ideas to better understand the pathology of WSS.}, subject = {Humangenetik}, language = {en} }