@article{BauriedlGerovacHeidrichetal.2020, author = {Bauriedl, Saskia and Gerovac, Milan and Heidrich, Nadja and Bischler, Thorsten and Barquist, Lars and Vogel, J{\"o}rg and Schoen, Christoph}, title = {The minimal meningococcal ProQ protein has an intrinsic capacity for structure-based global RNA recognition}, series = {Nature Communications}, volume = {11}, journal = {Nature Communications}, doi = {10.1038/s41467-020-16650-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-230040}, year = {2020}, abstract = {FinO-domain proteins are a widespread family of bacterial RNA-binding proteins with regulatory functions. Their target spectrum ranges from a single RNA pair, in the case of plasmid-encoded FinO, to global RNA regulons, as with enterobacterial ProQ. To assess whether the FinO domain itself is intrinsically selective or promiscuous, we determine in vivo targets of Neisseria meningitidis, which consists of solely a FinO domain. UV-CLIP-seq identifies associations with 16 small non-coding sRNAs and 166 mRNAs. Meningococcal ProQ predominantly binds to highly structured regions and generally acts to stabilize its RNA targets. Loss of ProQ alters transcript levels of >250 genes, demonstrating that this minimal ProQ protein impacts gene expression globally. Phenotypic analyses indicate that ProQ promotes oxidative stress resistance and DNA damage repair. We conclude that FinO domain proteins recognize some abundant type of RNA shape and evolve RNA binding selectivity through acquisition of additional regions that constrain target recognition. FinO-domain proteins are bacterial RNA-binding proteins with a wide range of target specificities. Here, the authors employ UV CLIP-seq and show that minimal ProQ protein of Neisseria meningitidis binds to various small non-coding RNAs and mRNAs involved in virulence.}, language = {en} } @article{ElMoualiGerovacMineikaitÄ—etal.2021, author = {El Mouali, Youssef and Gerovac, Milan and MineikaitÄ—, Raminta and Vogel, J{\"o}rg}, title = {In vivo targets of Salmonella FinO include a FinP-like small RNA controlling copy number of a cohabitating plasmid}, series = {Nucleic Acids Research}, volume = {49}, journal = {Nucleic Acids Research}, number = {9}, doi = {10.1093/nar/gkab281}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261072}, pages = {5319-5335}, year = {2021}, abstract = {FinO-domain proteins represent an emerging family of RNA-binding proteins (RBPs) with diverse roles in bacterial post-transcriptional control and physiology. They exhibit an intriguing targeting spectrum, ranging from an assumed single RNA pair (FinP/traJ) for the plasmid-encoded FinO protein, to transcriptome-wide activity as documented for chromosomally encoded ProQ proteins. Thus, the shared FinO domain might bear an unusual plasticity enabling it to act either selectively or promiscuously on the same cellular RNA pool. One caveat to this model is that the full suite of in vivo targets of the assumedly highly selective FinO protein is unknown. Here, we have extensively profiled cellular transcripts associated with the virulence plasmid-encoded FinO in Salmonella enterica. While our analysis confirms the FinP sRNA of plasmid pSLT as the primary FinO target, we identify a second major ligand: the RepX sRNA of the unrelated antibiotic resistance plasmid pRSF1010. FinP and RepX are strikingly similar in length and structure, but not in primary sequence, and so may provide clues to understanding the high selectivity of FinO-RNA interactions. Moreover, we observe that the FinO RBP encoded on the Salmonella virulence plasmid controls the replication of a cohabitating antibiotic resistance plasmid, suggesting cross-regulation of plasmids on the RNA level.}, language = {en} } @phdthesis{Paknia2013, author = {Paknia, Elham}, title = {Identification of a quality control check-point for the assembly of mRNA-processing snRNPs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-98744}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {An essential step in eukaryotic gene expression is splicing, i.e. the excision of non-coding sequences from pre-mRNA and the ligation of coding-sequences. This reaction is carried out by the spliceosome, which is a macromolecular machine composed of small nuclear ribonucleoproteins (snRNPs) and a large number of proteins. Spliceosomal snRNPs are composed of one snRNA (or two in case of U4/6 snRNPs), seven common Sm proteins (SmD1, D2, D3, B, E, F, G) and several particle-specific proteins. The seven Sm proteins form a ring shaped structure on the snRNA, termed Sm core domain that forms a structural framework of all spliceosomal snRNPs. In the toroidal Sm core domain, the individual Sm proteins are arranged in the sequence SmE-SmG-SmD3-SmB- SmD1-SmD2-SmF from the first to the seventh nucleotide of the Sm site, respectively. The individual positions of Sm proteins in the Sm core domain are not interchangeable. snRNPs are formed in vivo in a step-wise process, which starts with the export of newly transcribed snRNA to the cytoplasm. Within this compartment, Sm proteins are synthesized and subsequently transferred onto the snRNA. Upon formation of the Sm core and further modifications of snRNA, the snRNP is imported into the nucleus to join the spliceosome. Prior to assembly into snRNPs, Sm proteins exist as specific hetero-oligomers in the cytoplasm. The association of these proteins with snRNA occurs spontaneously in vitro but requires the assistance of two major units, PRMT5- and SMN- complexes, in vivo. The early phase of assembly is critically influenced by the assembly chaperone pICln. This protein pre-organizes Sm proteins to functional building blocks and enables their recruitment onto the PRMT5 complex for methylation. Sm proteins are subsequently released from the PRMT5 complex as pICln bound entities and transferred onto the SMN-complex. The SMN complex then liberates the Sm proteins from the pICln-induced kinetic trap and allows their transfer onto the snRNA. Although the principal roles of SMN- and PRMT5 complexes in the assembly of snRNPs have been established, it is still not clear how newly translated Sm proteins are guided into the assembly line. In this thesis, I have uncovered a new facet of pICln function in the assembly of snRNPs. I have shown that newly synthesized Sm proteins are retained at the ribosome upon termination of translation. Their release is facilitated by pICln, which interacts with the cognate Sm protein hetero-oligomers at their site of synthesis on the ribosome and recruits them into the assembly pathway. Additionally, I have been able to show that the early engagement of pICln with the Sm proteins ensures the flawless oligomerization of Sm proteins and prevents any non-chaperoned release and diffusion of Sm proteins in the cytoplasm. In a second project, I have studied the mechanism of U7 snRNP assembly. This particle is a major component of the 3' end processing machinery of replication dependent histone mRNAs. A biochemical hallmark of U7 is its unique Sm core in which the two canonical Sm proteins D1 and D2 are replaced by so-called "like Sm proteins". The key question I addressed in my thesis was, how this "alternative" Sm core is assembled onto U7 snRNA. I have provided experimental evidence that the assembly route of U7 snRNPs and spliceosomal snRNPs are remarkably similar: The assembly of both particles depends on the same assembly factors and the mechanistic details are similar. It appears that formation of the U7- or spliceosomal- core specific 6S complex is the decisive step in assembly.}, subject = {Small nuclear RNP}, language = {en} }