@article{BelaidiRauchZhangetal.2019, author = {Belaidi, Houmam and Rauch, Florian and Zhang, Zuolun and Latouche, Camille and Boucekkine, Abdou and Marder, Todd B. and Halet, Jean-Francois}, title = {Insights into the optical properties of triarylboranes with strongly electron-accepting bis(fluoromesityl)boryl groups: when theory meets experiment}, series = {ChemPhotoChem}, volume = {4}, journal = {ChemPhotoChem}, number = {3}, doi = {10.1002/cptc.201900256}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-205600}, pages = {173-180}, year = {2019}, abstract = {The photophysical properties (absorption, fluorescence and phosphorescence) of a series of triarylboranes of the form 4-D-C\(_6\)H\(_4\)-B(Ar)\(_2\) (D=\(^t\)Bu or NPh\(_2\); Ar=mesityl (Mes) or 2,4,6-tris(trifluoromethylphenyl (Fmes)) were analyzed theoretically using state-of-the-art DFT and TD-DFT methods. Simulated emission spectra and computed decay rate constants are in very good agreement with the experimental data. Unrestricted electronic computations including vibronic contributions explain the unusual optical behavior of 4-\(^t\)Bu-C\(_6\)H\(_4\)-B(Fmes)\(_2\) 2, which shows both fluorescence and phosphorescence at nearly identical energies (at 77 K in a frozen glass). Analysis of the main normal modes responsible for the phosphorescence vibrational fine structure indicates that the bulky tert-butyl group tethered to the phenyl ring is strongly involved. Interestingly, in THF solvent, the computed energies of the singlet and triplet excited states are very similar for compound 2 only, which may explain why 2 shows phosphorescence in contrast to the other members of the series.}, language = {en} } @unpublished{BraunschweigKrummenacherLichtenbergetal.2016, author = {Braunschweig, Holger and Krummenacher, Ivo and Lichtenberg, Crispin and Mattock, James and Sch{\"a}fer, Marius and Schmidt, Uwe and Schneider, Christoph and Steffenhagen, Thomas and Ullrich, Stefan and Vargas, Alfredo}, title = {Dibora[2]ferrocenophane: A Carbene-Stabilized Diborene in a Strained cis-Configuration}, series = {Angewandte Chemie, International Edition}, journal = {Angewandte Chemie, International Edition}, doi = {10.1002/anie.201609601}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141981}, pages = {9}, year = {2016}, abstract = {Unsaturated bridges that link the two cyclopentadienyl ligands together in strained ansa metallocenes are rare and limited to carbon-carbon double bonds. The synthesis and isolation of a strained ferrocenophane containing an unsaturated two-boron bridge, isoelectronic with a C=C double bond, was achieved by reduction of a carbene-stabilized 1,1'-bis(dihaloboryl)ferrocene. A combination of spectroscopic and electrochemical measurements as well as density functional theory (DFT) calculations was used to assess the influence of the unprecedented strained cis configuration on the optical and electrochemical properties of the carbene-stabilized diborene unit. Initial reactivity studies show that the dibora[2]ferrocenophane is prone to boron-boron double bond cleavage reactions.}, subject = {Metallocene}, language = {en} } @article{BruecknerFantuzziStennettetal.2021, author = {Br{\"u}ckner, Tobias and Fantuzzi, Felipe and Stennett, Tom E. and Krummenacher, Ivo and Dewhurst, Rian D. and Engels, Bernd and Braunschweig, Holger}, title = {Isolation of neutral, mono-, and dicationic B\(_2\)P\(_2\) rings by diphosphorus addition to a boron-boron triple bond}, series = {Angewandte Chemie International Edition}, volume = {60}, journal = {Angewandte Chemie International Edition}, number = {24}, doi = {10.1002/anie.202102218}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256451}, pages = {13661-13665}, year = {2021}, abstract = {The NHC-stabilised diboryne (B\(_2\)(SIDep)\(_2\); SIDep=1,3-bis(2,6-diethylphenyl)imidazolin-2-ylidene) undergoes a high-yielding P-P bond activation with tetraethyldiphosphine at room temperature to form a B\(_2\)P\(_2\) heterocycle via a diphosphoryldiborene by 1,2-diphosphination. The heterocycle can be oxidised to a radical cation and a dication, respectively, depending on the oxidant used and its counterion. Starting from the planar, neutral 1,3-bis(alkylidene)-1,3-diborata-2,4-diphosphoniocyclobutane, each oxidation step leads to decreased B-B distances and loss of planarity by cationisation. X-ray analyses in conjunction with DFT and CASSCF/NEVPT2 calculations reveal closed-shell singlet, butterfly-shaped structures for the NHC-stabilised dicationic B\(_2\)P\(_2\) rings, with their diradicaloid, planar-ring isomers lying close in energy.}, language = {en} } @article{ChenMengLiaoetal.2021, author = {Chen, Xing and Meng, Guoyun and Liao, Guanming and Rauch, Florian and He, Jiang and Friedrich, Alexandra and Marder, Todd B. and Wang, Nan and Chen, Pangkuan and Wang, Suning and Yin, Xiaodong}, title = {Highly Emissive 9-Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {20}, doi = {10.1002/chem.202005185}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256738}, pages = {6274-6282}, year = {2021}, abstract = {A series of 9-borafluorene derivatives, functionalised with electron-donating groups, have been prepared. Some of these 9-borafluorene compounds exhibit strong yellowish emission in solution and in the solid state with relatively high quantum yields (up to 73.6 \% for FMesB-Cz as a neat film). The results suggest that the highly twisted donor groups suppress charge transfer, but the intrinsic photophysical properties of the 9-borafluorene systems remain. The new compounds showed enhanced stability towards the atmosphere, and exhibited excellent thermal stability, revealing their potential for application in materials science. Organic light-emitting diode (OLED) devices were fabricated with two of the highly emissive compounds, and they exhibited strong yellow-greenish electroluminescence, with a maximum luminance intensity of >22 000 cd m\(^{-2}\). These are the first two examples of 9-borafluorene derivatives being used as light-emitting materials in OLED devices, and they have enabled us to achieve a balance between maintaining their intrinsic properties while improving their stability.}, language = {en} } @article{FranzsicoFantuzziCardozoetal.2021, author = {Franzsico, Marcos A. S. and Fantuzzi, Felipe and Cardozo, Thiago M. and Esteves, Pierre M. and Engels, Bernd and Oliveira, Ricardo R.}, title = {Taming the Antiferromagnetic Beast: Computational Design of Ultrashort Mn-Mn Bonds Stabilized by N-Heterocyclic Carbenes}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {47}, doi = {10.1002/chem.202101116}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256874}, pages = {12126-12136}, year = {2021}, abstract = {The development of complexes featuring low-valent, multiply bonded metal centers is an exciting field with several potential applications. In this work, we describe the design principles and extensive computational investigation of new organometallic platforms featuring the elusive manganese-manganese bond stabilized by experimentally realized N-heterocyclic carbenes (NHCs). By using DFT computations benchmarked against multireference calculations, as well as MO- and VB-based bonding analyses, we could disentangle the various electronic and structural effects contributing to the thermodynamic and kinetic stability, as well as the experimental feasibility, of the systems. In particular, we explored the nature of the metal-carbene interaction and the role of the ancillary η\(^{6}\) coordination to the generation of Mn\(_{2}\) systems featuring ultrashort metal-metal bonds, closed-shell singlet multiplicities, and positive adiabatic singlet-triplet gaps. Our analysis identifies two distinct classes of viable synthetic targets, whose electrostructural properties are thoroughly investigated.}, language = {en} } @article{HattoriMichailSchmiedeletal.2019, author = {Hattori, Yohei and Michail, Evripidis and Schmiedel, Alexander and Moos, Michael and Holzapfel, Marco and Krummenacher, Ivo and Braunschweig, Holger and M{\"u}ller, Ulrich and Pflaum, Jens and Lambert, Christoph}, title = {Luminescent Mono-, Di-, and Tri-radicals: Bridging Polychlorinated Triarylmethyl Radicals by Triarylamines and Triarylboranes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {68}, doi = {10.1002/chem.201903007}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208162}, pages = {15463-15471}, year = {2019}, abstract = {Up to three polychlorinated pyridyldiphenylmethyl radicals bridged by a triphenylamine carrying electron withdrawing (CN), neutral (Me), or donating (OMe) groups were synthesized and analogous radicals bridged by tris(2,6-dimethylphenyl)borane were prepared for comparison. All compounds were as stable as common closed-shell organic compounds and showed significant fluorescence upon excitation. Electronic, magnetic, absorption, and emission properties were examined in detail, and experimental results were interpreted using DFT calculations. Oxidation potentials, absorption and emission energies could be tuned depending on the electron density of the bridges. The triphenylamine bridges mediated intramolecular weak antiferromagnetic interactions between the radical spins, and the energy difference between the high spin and low spin states was determined by temperature dependent ESR spectroscopy and DFT calculations. The fluorescent properties of all radicals were examined in detail and revealed no difference for high and low spin states which facilitates application of these dyes in two-photon absorption spectroscopy and OLED devices.}, language = {en} } @article{RauchEndresFriedrichetal.2020, author = {Rauch, Florian and Endres, Peter and Friedrich, Alexandra and Sieh, Daniel and H{\"a}hnel, Martin and Krummenacher, Ivo and Braunschweig, Holger and Finze, Maik and Ji, Lei and Marder, Todd B.}, title = {An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.202001985}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218345}, pages = {12951 -- 12963}, year = {2020}, abstract = {Using a new divergent approach, conjugated triarylborane dendrimers were synthesized up to the 2nd generation. The synthetic strategy consists of three steps: 1) functionalization, via iridium catalyzed C-H borylation; 2) activation, via fluorination of the generated boronate ester with K[HF\(_{2}\)] or [N(nBu\(_{4}\))][HF\(_{2}\)]; and 3) expansion, via reaction of the trifluoroborate salts with aryl Grignard reagents. The concept was also shown to be viable for a convergent approach. All but one of the conjugated borane dendrimers exhibit multiple, distinct and reversible reduction potentials, making them potentially interesting materials for applications in molecular accumulators. Based on their photophysical properties, the 1st generation dendrimers exhibit good conjugation over the whole system. However, the conjugation does not increase further upon expansion to the 2nd generation, but the molar extinction coefficients increase linearly with the number of triarylborane subunits, suggesting a potential application as photonic antennas.}, language = {en} } @article{SchmidtFantuzziKlopfetal.2021, author = {Schmidt, Paul and Fantuzzi, Felipe and Klopf, Jonas and Schr{\"o}der, Niklas B. and Dewhurst, Rian D. and Braunschweig, Holger and Engel, Volker and Engels, Bernd}, title = {Twisting versus delocalization in CAAC- and NHC-stabilized boron-based biradicals: the roles of sterics and electronics}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {16}, doi = {10.1002/chem.202004619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256636}, pages = {5160-5170}, year = {2021}, abstract = {Twisted boron-based biradicals featuring unsaturated C\(_2\)R\(_2\) (R=Et, Me) bridges and stabilization by cyclic (alkyl)(amino)carbenes (CAACs) were recently prepared. These species show remarkable geometrical and electronic differences with respect to their unbridged counterparts. Herein, a thorough computational investigation on the origin of their distinct electrostructural properties is performed. It is shown that steric effects are mostly responsible for the preference for twisted over planar structures. The ground-state multiplicity of the twisted structure is modulated by the σ framework of the bridge, and different R groups lead to distinct multiplicities. In line with the experimental data, a planar structure driven by delocalization effects is observed as global minimum for R=H. The synthetic elusiveness of C\(_2\)R\(_2\)-bridged systems featuring N-heterocyclic carbenes (NHCs) was also investigated. These results could contribute to the engineering of novel main group biradicals.}, language = {en} } @article{SchaeferBuehlerHeyeretal.2021, author = {Sch{\"a}fer, Natalie and B{\"u}hler, Michael and Heyer, Lisa and R{\"o}hr, Merle I. S. and Beuerle, Florian}, title = {Endohedral Hydrogen Bonding Templates the Formation of a Highly Strained Covalent Organic Cage Compound}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {19}, doi = {10.1002/chem.202005276}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256762}, pages = {6077-6085}, year = {2021}, abstract = {A highly strained covalent organic cage compound was synthesized from hexahydroxy tribenzotriquinacene (TBTQ) and a meta-terphenyl-based diboronic acid with an additional benzoic acid substituent in 2'-position. Usually, a 120° bite angle in the unsubstituted ditopic linker favors the formation of a [4+6] cage assembly. Here, the introduction of the benzoic acid group is shown to lead to a perfectly preorganized circular hydrogen-bonding array in the cavity of a trigonal-bipyramidal [2+3] cage, which energetically overcompensates the additional strain energy caused by the larger mismatch in bite angles for the smaller assembly. The strained cage compound was analyzed by mass spectrometry and \(^{1}\)H, \(^{13}\)C and DOSY NMR spectroscopy. DFT calculations revealed the energetic contribution of the hydrogen-bonding template to the cage stability. Furthermore, molecular dynamics simulations on early intermediates indicate an additional kinetic effect, as hydrogen bonding also preorganizes and rigidifies small oligomers to facilitate the exclusive formation of smaller and more strained macrocycles and cages.}, language = {en} } @article{WeiserCuiDewhurstetal.2023, author = {Weiser, Jonas and Cui, Jingjing and Dewhurst, Rian D. and Braunschweig, Holger and Engels, Bernd and Fantuzzi, Felipe}, title = {Structure and bonding of proximity-enforced main-group dimers stabilized by a rigid naphthyridine diimine ligand}, series = {Journal of Computational Chemistry}, volume = {44}, journal = {Journal of Computational Chemistry}, number = {3}, doi = {10.1002/jcc.26994}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312586}, pages = {456 -- 467}, year = {2023}, abstract = {The development of ligands capable of effectively stabilizing highly reactive main-group species has led to the experimental realization of a variety of systems with fascinating properties. In this work, we computationally investigate the electronic, structural, energetic, and bonding features of proximity-enforced group 13-15 homodimers stabilized by a rigid expanded pincer ligand based on the 1,8-naphthyridine (napy) core. We show that the redox-active naphthyridine diimine (NDI) ligand enables a wide variety of structural motifs and element-element interaction modes, the latter ranging from isolated, element-centered lone pairs (e.g., E = Si, Ge) to cases where through-space π bonds (E = Pb), element-element multiple bonds (E = P, As) and biradical ground states (E = N) are observed. Our results hint at the feasibility of NDI-E2 species as viable synthetic targets, highlighting the versatility and potential applications of napy-based ligands in main-group chemistry.}, language = {en} }