@article{WengHeidenreichMetzetal.2021, author = {Weng, Andreas M. and Heidenreich, Julius F. and Metz, Corona and Veldhoen, Simon and Bley, Thorsten A. and Wech, Tobias}, title = {Deep learning-based segmentation of the lung in MR-images acquired by a stack-of-spirals trajectory at ultra-short echo-times}, series = {BMC Medical Imaging}, volume = {21}, journal = {BMC Medical Imaging}, doi = {10.1186/s12880-021-00608-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260520}, year = {2021}, abstract = {Background Functional lung MRI techniques are usually associated with time-consuming post-processing, where manual lung segmentation represents the most cumbersome part. The aim of this study was to investigate whether deep learning-based segmentation of lung images which were scanned by a fast UTE sequence exploiting the stack-of-spirals trajectory can provide sufficiently good accuracy for the calculation of functional parameters. Methods In this study, lung images were acquired in 20 patients suffering from cystic fibrosis (CF) and 33 healthy volunteers, by a fast UTE sequence with a stack-of-spirals trajectory and a minimum echo-time of 0.05 ms. A convolutional neural network was then trained for semantic lung segmentation using 17,713 2D coronal slices, each paired with a label obtained from manual segmentation. Subsequently, the network was applied to 4920 independent 2D test images and results were compared to a manual segmentation using the S{\o}rensen-Dice similarity coefficient (DSC) and the Hausdorff distance (HD). Obtained lung volumes and fractional ventilation values calculated from both segmentations were compared using Pearson's correlation coefficient and Bland Altman analysis. To investigate generalizability to patients outside the CF collective, in particular to those exhibiting larger consolidations inside the lung, the network was additionally applied to UTE images from four patients with pneumonia and one with lung cancer. Results The overall DSC for lung tissue was 0.967 ± 0.076 (mean ± standard deviation) and HD was 4.1 ± 4.4 mm. Lung volumes derived from manual and deep learning based segmentations as well as values for fractional ventilation exhibited a high overall correlation (Pearson's correlation coefficent = 0.99 and 1.00). For the additional cohort with unseen pathologies / consolidations, mean DSC was 0.930 ± 0.083, HD = 12.9 ± 16.2 mm and the mean difference in lung volume was 0.032 ± 0.048 L. Conclusions Deep learning-based image segmentation in stack-of-spirals based lung MRI allows for accurate estimation of lung volumes and fractional ventilation values and promises to replace the time-consuming step of manual image segmentation in the future.}, language = {en} } @article{WechAnkenbrandBleyetal.2022, author = {Wech, Tobias and Ankenbrand, Markus Johannes and Bley, Thorsten Alexander and Heidenreich, Julius Frederik}, title = {A data-driven semantic segmentation model for direct cardiac functional analysis based on undersampled radial MR cine series}, series = {Magnetic Resonance in Medicine}, volume = {87}, journal = {Magnetic Resonance in Medicine}, number = {2}, doi = {10.1002/mrm.29017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257616}, pages = {972-983}, year = {2022}, abstract = {Purpose Image acquisition and subsequent manual analysis of cardiac cine MRI is time-consuming. The purpose of this study was to train and evaluate a 3D artificial neural network for semantic segmentation of radially undersampled cardiac MRI to accelerate both scan time and postprocessing. Methods A database of Cartesian short-axis MR images of the heart (148,500 images, 484 examinations) was assembled from an openly accessible database and radial undersampling was simulated. A 3D U-Net architecture was pretrained for segmentation of undersampled spatiotemporal cine MRI. Transfer learning was then performed using samples from a second database, comprising 108 non-Cartesian radial cine series of the midventricular myocardium to optimize the performance for authentic data. The performance was evaluated for different levels of undersampling by the Dice similarity coefficient (DSC) with respect to reference labels, as well as by deriving ventricular volumes and myocardial masses. Results Without transfer learning, the pretrained model performed moderately on true radial data [maximum number of projections tested, P = 196; DSC = 0.87 (left ventricle), DSC = 0.76 (myocardium), and DSC =0.64 (right ventricle)]. After transfer learning with authentic data, the predictions achieved human level even for high undersampling rates (P = 33, DSC = 0.95, 0.87, and 0.93) without significant difference compared with segmentations derived from fully sampled data. Conclusion A 3D U-Net architecture can be used for semantic segmentation of radially undersampled cine acquisitions, achieving a performance comparable with human experts in fully sampled data. This approach can jointly accelerate time-consuming cine image acquisition and cumbersome manual image analysis.}, language = {en} } @phdthesis{Wech2012, author = {Wech, Tobias}, title = {Compressed Sensing in der funktionellen kardialen Magnetresonanztomographie}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77179}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die MRT des Herzens wird aufgrund hoher Reproduzierbarkeit und geringer Variabilit{\"a}t als Referenzstandard f{\"u}r die Bestimmung der kardialen Funktion betrachtet. Auch in der pr{\"a}klinischen Forschung bietet die MRT eine ausgezeichnete Charakterisierung der kardialen Funktion und erm{\"o}glicht eine exzellente Analyse modellierter Krankheitsbilder. In beiden F{\"a}llen besteht jedoch weiterhin Optimierungsbedarf. Die klinische Herz-MRT stellt ein aufwendiges Verfahren mit relativ langer Messzeit dar und ist dadurch mit hohen Untersuchungskosten verbunden. In der pr{\"a}klinischen Kleintierbildgebung m{\"u}ssen zum Erreichen der notwendigen h{\"o}heren Orts- und Zeitaufl{\"o}sung ebenfalls lange Aufnahmezeiten in Kauf genommen werden. Um die kardiale MRT dort routinem{\"a}ßig in großen Studienkollektiven anwenden zu k{\"o}nnen, ist eine schnellere Bildgebung essentiell. Neben einer Verbesserung der Tomographen-Hardware und der Optimierung von Bildgebungssequenzen standen im letzten Jahrzehnt vermehrt informationstheoretische Ans{\"a}tze zur Beschleunigung der MR-Datenakquisition im Fokus der Entwicklung. W{\"a}hrend zu Beginn des Jahrtausends die Parallele Bildgebung (PI) einen Forschungsschwerpunkt repr{\"a}sentierte, spielte sich in den letzten f{\"u}nf Jahren vermehrt die von Donoho und Cand{\`e}s eingef{\"u}hrte Compressed Sensing (CS) Theorie in den Vordergrund. Diese erm{\"o}glicht eine Signalrekonstruktion aus unvollst{\"a}ndig gemessenen Koeffizienten einer linearen Messung (z.B. Fouriermessung) unter Ausnutzung der Sparsit{\"a}t des Signals in einer beliebigen Transformationsbasis. Da sich die MRT hervorragend f{\"u}r den Einsatz von CS eignet, wurde die Technik in der Forschung bereits vielfach angewendet. Die zur Rekonstruktion unterabgetasteter Aufnahmen n{\"o}tigen CS-Algorithmen haben jedoch eine signifikante Ver{\"a}nderung des Bildgebungsprozesses der MRT zur Folge. Konnte dieser zuvor in guter N{\"a}herung als linear und station{\"a}r betrachtet werden, so repr{\"a}sentiert die CS-Rekonstruktion eine nichtlineare und nichtstation{\"a}re Transformation. Objektinformation wird nicht mehr ortsunabh{\"a}ngig und proportional zur Intensit{\"a}t in die Abbildung transportiert. Das Bild ist viel mehr das Ergebnis eines Optimierungsprozesses, der sowohl die Konsistenz gegen{\"u}ber der unterabgetasteten Messung als auch die Sparsit{\"a}t des Signals maximiert. Der erste Teil dieser Dissertation beschreibt eine Methode, die eine objektive Einsch{\"a}tzung der Bildqualit{\"a}t CS-rekonstruierter MR-Bilder erm{\"o}glicht. Die CS-Beschleunigung verspricht eine Verk{\"u}rzung der Messzeit ohne Verlust an Bildqualit{\"a}t, wobei letztere bisher gr{\"o}ßtenteils qualitativ bzw. quantitativ nur unzureichend beurteilt wurde. Konnte der Bildgebungsprozess der klassischen MRT (linear und station{\"a}r) durch die Bestimmung einer Punktspreizfunktion (PSF) robust und effektiv validiert und optimiert werden, erlauben die CS-Algorithmen aufgrund ihres nichtlinearen und nichtstation{\"a}ren Verhaltens ohne Weiteres keine {\"a}quivalente Analyse. Um dennoch eine entsprechende Evaluierung des CS-Bildgebungsprozesses zu erm{\"o}glichen, wurde die Anwendung einer lokalen Punktspreizfunktion (LPSF) f{\"u}r den in der Folge verwendeten Iterative Soft Thresholding Algorithmus untersucht. Die LPSF ber{\"u}cksichtigt die Ortsabh{\"a}ngigkeit der CS-Rekonstruktion und muss daher f{\"u}r jeden Ort (Pixel) eines Bildes bestimmt werden. Dar{\"u}ber hinaus wurde die LPSF im linearen Bereich der CS-Transformation ermittelt. Dazu wurde das zu bewertende Bild nach Anwenden einer kleinen lokalen St{\"o}rung rekonstruiert. Die Breite des Hauptmaximums der LPSF wurde schließlich verwendet, um ortsaufgel{\"o}ste Aufl{\"o}sungsstudien durchzuf{\"u}hren. Es wurde sowohl der Einfluss typischer Unterabtastschemata f{\"u}r CS als auch der Einsatz diskreter Gradienten zur Sparsifizierung eines Phantombildes untersucht. Anschließend wurde die Prozedur zur Bestimmung der r{\"a}umlichen und zeitlichen Aufl{\"o}sung in der Herzbildgebung getestet. In allen Beispielen erm{\"o}glichte das vorgeschlagene Verfahren eine solide und objektive Analyse der Bildaufl{\"o}sung CS-rekonstruierter Aufnahmen. Wurde zuvor meist ausschließlich auf Vergleiche mit einer vollst{\"a}ndig abgetasteten Referenz zur Qualit{\"a}tsbeurteilung zur{\"u}ckgegriffen, so stellt die vorgestellte Aufl{\"o}sungsbestimmung einen Schritt in Richtung einer standardisierten Bildanalyse bei der Verwendung der Beschleunigung mittels CS dar. Die Analyse der Abtastmuster zeigte, dass auch bei der Anwendung von CS die Ber{\"u}cksichtigung der nominell h{\"o}chsten Frequenzen k_max unerl{\"a}sslich ist. Fr{\"u}here Publikationen schlagen Abtastfolgen mit einer teils starken Gewichtung der Messpunkte zum k-Raum-Zentrum hin vor. Die Ergebnisse der vorliegenden Arbeit relativieren ein derartiges Vorgehen, da zumindest bei den durchgef{\"u}hrten Untersuchungen ein Aufl{\"o}sungsverlust bei analoger Vorgehensweise zu verzeichnen war. Ebenso zeigten sich dynamische Aufnahmen, die unter Verwendung des x-f-Raums als sparse Basis rekonstruiert wurden, durchaus anf{\"a}llig f{\"u}r zeitliches Blurring. Dieses resultiert aus der Unterdr{\"u}ckung hoher zeitlicher Frequenzen und konnte durch die ortsaufgel{\"o}sten Aufl{\"o}sungskarten sichtbar gemacht werden. Neben der Aufl{\"o}sung ist f{\"u}r eine umfassende Analyse der Bildqualit{\"a}t auch die Untersuchung potentieller Aliasing-Artefakte sowie des Signal-zu-Rausch-Verh{\"a}ltnisses (SNR) notwendig. W{\"a}hrend Aliasing mit Hilfe der Eintr{\"a}ge der LPSF außerhalb des Hauptmaximums untersucht werden kann, wurde in Kap. 5 eine Modifikation der Multi-Replika-Methode von Robson et al. zur Rauschanalyse bei Verwendung nichtlinearer Algorithmen vorgestellt. Unter Einbeziehung aller genannten Qualit{\"a}tsparameter ist eine robuste Bewertung der Bildqualit{\"a}t auch bei einer Verwendung von CS m{\"o}glich. Die differenzierte Evaluierung ebnet den Weg hin zu einem objektiven Vergleich neuer Entwicklungen mit bisherigen Standard-Techniken und kann dadurch den Einzug von CS in die klinische Anwendung vorantreiben. Nach den theoretischen Betrachtungen der Bildqualit{\"a}t behandelt die Dissertation die erstmalige Anwendung von CS zur Beschleunigung der funktionellen Herzdiagnostik in der pr{\"a}klinischen MR-Kleintierbildgebung. Diese Studien wurden in Zusammenarbeit mit der British Heart Foundation Experimental Magnetic Resonance Unit (BMRU) der University of Oxford durchgef{\"u}hrt. Die Algorithmen f{\"u}r eine Beschleunigung mittels der CS-Theorie wurden anhand der dort am 9,4T Tomographen gemessenen (unterabgetasteten) Datens{\"a}tze entwickelt und optimiert. Zun{\"a}chst wurde eine Beschleunigung ausschließlich mittels CS untersucht. Dazu wurde die segmentierte, EKG- und Atemgetriggerte kartesische Cine-Aufnahme in Phasenkodierrichtung unterabgetastet und mittels CS rekonstruiert. Die sparse Darstellung wurde durch Ermitteln zeitlicher Differenzbilder f{\"u}r jede Herzphase erhalten. Durch Variation der Abtastmuster in der zeitlichen Dimension konnte ein vollst{\"a}ndig abgetastetes zeitliches Mittelbild bestimmt werden, das anschließend von jedem einzelnen Herzphasenbild subtrahiert wurde. In einer Validierungsphase wurden an der Maus vollst{\"a}ndig aufgenommene Cine-Akquisitionen retrospektiv unterabgetastet, um die maximal m{\"o}gliche Beschleunigung mittels CS zu ermitteln. Es wurden u.a. funktionelle Herz-Parameter f{\"u}r jede Gruppe des jeweiligen Beschleunigungsfaktors bestimmt und mittels einer statistischen Analyse verglichen. Die Gesamtheit aller Ergebnisse zeigte die M{\"o}glichkeit einer dreifachen Beschleunigung ohne eine Degradierung der Genauigkeit der Methode auf. Die ermittelte Maximalbeschleunigung wurde in einer unterabgetastet gemessenen Bilderserie mit anschließender CS-Rekonstruktion validiert. Die Abtastschemata wurden dazu mit Hilfe der Transformations-Punktspreizfunktion weiter optimiert. In einer Erweiterung der Studie wurde zum Zweck einer noch h{\"o}heren Beschleunigung die CS-Technik mit der PI kombiniert. Erneut fand eine Unterabtastung der Phasenkodierrichtung einer kartesischen Trajektorie statt. Die Messungen erfolgten mit einer 8-Kanal-M{\"a}usespule an einem 9,4T Tomographen. Um das Potential beider Beschleunigungstechniken auszunutzen, wurden die Methoden CS und PI in serieller Weise implementiert. F{\"u}r die PI-Beschleunigung wurde der vollst{\"a}ndig abgetastete k-Raum zun{\"a}chst gleichm{\"a}ßig unterabgetastet. Auf dem resultierenden Untergitter wurde zus{\"a}tzlich eine Unterabtastung nach Pseudo-Zufallszahlen durchgef{\"u}hrt, um eine Beschleunigung mittels CS zu erm{\"o}glichen. Die entwickelte Rekonstruktion erfolgte ebenfalls seriell. Zun{\"a}chst wurde mittels CS das {\"a}quidistante Untergitter rekonstruiert, um anschließend mittels GRAPPA die noch fehlenden Daten zu berechnen. Um eine zus{\"a}tzliche Messung zur Kalibrierung der GRAPPA-Faktoren zu umgehen, wurde das {\"a}quidistant unterabgetastete Untergitter von Herzphase zu Herzphase um je einen Phasenkodierschritt weitergeschoben. Dieses Vorgehen erlaubt die Ermittlung eines vollst{\"a}ndig abgetasteten k-Raums mit einer geringeren zeitlichen Aufl{\"o}sung, der die notwendige Bestimmung der Wichtungsfaktoren erm{\"o}glicht. Folgende Kombinationen von Beschleunigungsfaktoren wurden mittels retrospektiver Unterabtastung eines vollst{\"a}ndig aufgenommenen Datensatzes untersucht: R_CS x R_PI = 2 x 2, 2 x 3, 3 x 2 und 3 x 3. Die Analyse des Bildrauschens, des systematischen Fehlers und der Aufl{\"o}sung f{\"u}hrte zu dem Schluss, dass eine sechsfache Beschleunigung mit Hilfe der hybriden Rekonstruktionstechnik m{\"o}glich ist. W{\"a}hrend mit steigender CS-Beschleunigung der systematische Fehler leicht anstieg, f{\"u}hrte ein h{\"o}herer PI-Beschleunigungsfaktor zu einer leichten Verst{\"a}rkung des statistischen Fehlers. Der statistische Fehler zeigte jedoch ebenfalls eine Verringerung bei steigender Beschleunigung mittels CS. Die Fehler waren allerdings stets auf einem Niveau, das durchaus auch Beschleunigungen bis R_CS x R_PI =3 x 3 zul{\"a}sst. Die LPSF-Analyse zeigte einen Verlust der r{\"a}umlichen Aufl{\"o}sung von ca. 50 \% bei R=6 sowie einen mittleren Verlust von 64 \% bei R=9. Offensichtlich ging die ebenfalls beobachtete Minimierung des Bildrauschens durch den CS-Algorithmus im Falle der relativ stark verrauschten Kleintieraufnahmen zu Lasten der Bildaufl{\"o}sung. Die mit zunehmender Beschleunigung st{\"a}rker geblurrten Grenzen zwischen Blutpool und Myokardgewebe erschweren die Segmentierung und stellen eine m{\"o}gliche Fehlerquelle dar. Unter Beachtung aller Ergebnisse ist eine sechsfache Beschleunigung (R_CS x R_PI = 2 x 3, 3 x 2) vertretbar. Die Hinzunahme der PI erm{\"o}glicht somit im Vergleich zur alleinigen Verwendung von CS eine weitere Beschleunigung um einen Faktor von zwei. Zusammenfassend erm{\"o}glicht der Einsatz von CS in der pr{\"a}klinischen funktionellen Herzbildgebung am Kleintier eine deutliche Reduktion der Messzeit. Bereits ohne Vorhandensein von Mehrkanalspulen kann die notwendige Datenmenge ohne signifikante Beeinflussung der Messergebnisse auf ein Drittel reduziert werden. Ist der Einsatz von Spulenarrays m{\"o}glich, kann die mit PI m{\"o}gliche dreifache Beschleunigung um einen weiteren Faktor zwei mittels CS auf R=6 erweitert werden. Dementsprechend kann CS einen wesentlichen Beitrag dazu leisten, dass das Potential Herz-MRT am Kleintier in großen Studienkollektiven effektiver abgerufen werden kann. Im letzten Teil der Arbeit wurde eine Technik f{\"u}r die funktionelle klinische MR-Herzbildgebung entwickelt. Hier wurde eine Beschleunigung mittels CS verwendet, um die Aufnahme des gesamten Herzens innerhalb eines Atemstillstandes des Patienten zu erm{\"o}glichen. Bei der derzeitigen Standardmethode werden {\"u}blicherweise 10-15 2D-Schichten des Herzens akquiriert, wobei jede einzelne Aufnahme einen Atemstillstand des Patienten erfordert. F{\"u}r die notwendige Beschleunigung wurde eine unterabgetastete 3D-Trajektorie verwendet. Durch Phasenkodierung einer Richtung sowie radiale Projektionen in den beiden anderen Dimensionen konnte eine effiziente Aufnahme unterhalb des Nyquist-Kriteriums erreicht werden. Die Sparsifizierung erfolgte, wie bereits in der beschriebenen pr{\"a}klinischen Anwendung, durch die Subtraktion eines zeitlichen Mittelbildes. In einer Simulation anhand eines retrospektiv unterabgetasteten Datensatzes konnte die theoretische Funktionalit{\"a}t der Rekonstruktionstechnik bei einer Beschleunigung bez{\"u}glich der Nyquist-Abtastung von R ~ 10 validiert werden. Die Unterschiede zum vollst{\"a}ndig abgetasteten Datensatz waren vernachl{\"a}ssigbar klein, so dass die vorgeschlagene Abtastfolge am Tomographen implementiert wurde. Mit dieser Sequenz wurde anschließend eine funktionelle Bilderserie an einem gesunden Probanden mit vollst{\"a}ndiger Herzabdeckung innerhalb eines Atemstopps aufgenommen. Fehlende Daten wurden analog zur Simulation mit Hilfe des vorgeschlagenen Algorithmus rekonstruiert. Im Vergleich zur Simulation ergaben sich aufgrund des Schichtprofils der 3D-Slab-Anregung zus{\"a}tzliche Aliasing-Artefakte in den {\"a}ußeren Partitionen. Die f{\"u}r radiale Aufnahmen typischen Streifenartefakte waren im rekonstruierten Bild, wenn auch mit sehr geringer Amplitude, noch erkennbar. Davon abgesehen wurde die Dynamik jedoch {\"u}ber das gesamte Herz hinweg gut dargestellt. Der hohe Kontrast zwischen Myokard und Blutpool bescheinigt den Bildern eine hervorragende Eignung f{\"u}r die Bestimmung funktioneller Herzparameter mittels einer Segmentierung. Zusammengefasst erlaubt die entwickelte Methode aufgrund der drastischen Reduktion der notwendigen Atemstopps des Patienten einen deutlich erh{\"o}hten Patientenkomfort sowie einen schnelleren Durchsatz aufgrund der verk{\"u}rzten Messzeit.}, subject = {Kernspintomografie}, language = {de} } @article{TranGiaWechBleyetal.2015, author = {Tran-Gia, Johannes and Wech, Tobias and Bley, Thorsten and K{\"o}stler, Herbert}, title = {Model-Based Acceleration of Look-Locker T1 Mapping}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0122611}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-126436}, pages = {e0122611}, year = {2015}, abstract = {Mapping the longitudinal relaxation time \(T_1\) has widespread applications in clinical MRI as it promises a quantitative comparison of tissue properties across subjects and scanners. Due to the long scan times of conventional methods, however, the use of quantitative MRI in clinical routine is still very limited. In this work, an acceleration of Inversion-Recovery Look-Locker (IR-LL) \(T_1\) mapping is presented. A model-based algorithm is used to iteratively enforce an exponential relaxation model to a highly undersampled radially acquired IR-LL dataset obtained after the application of a single global inversion pulse. Using the proposed technique, a \(T_1\) map of a single slice with 1.6mm in-plane resolution and 4mm slice thickness can be reconstructed from data acquired in only 6s. A time-consuming segmented IR experiment was used as gold standard for \(T_1\) mapping in this work. In the subsequent validation study, the model-based reconstruction of a single-inversion IR-LL dataset exhibited a \(T_1\) difference of less than 2.6\% compared to the segmented IR-LL reference in a phantom consisting of vials with \(T_1\) values between 200ms and 3000ms. In vivo, the \(T_1\) difference was smaller than 5.5\% in WM and GM of seven healthy volunteers. Additionally, the \(T_1\) values are comparable to standard literature values. Despite the high acceleration, all model-based reconstructions were of a visual quality comparable to fully sampled references. Finally, the reproducibility of the \(T_1\) mapping method was demonstrated in repeated acquisitions. In conclusion, the presented approach represents a promising way for fast and accurate \(T_1\) mapping using radial IR-LL acquisitions without the need of any segmentation.}, language = {en} } @article{StichPfaffWechetal.2020, author = {Stich, Manuel and Pfaff, Christiane and Wech, Tobias and Slawig, Anne and Ruyters, Gudrun and Dewdney, Andrew and Ringler, Ralf and K{\"o}stler, Herbert}, title = {The temperature dependence of gradient system response characteristics}, series = {Magnetic Resonance in Medicine}, volume = {83}, journal = {Magnetic Resonance in Medicine}, doi = {10.1002/mrm.28013}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206212}, pages = {1519-1527}, year = {2020}, abstract = {Purpose: The gradient system transfer function (GSTF) characterizes the frequency transfer behavior of a dynamic gradient system and can be used to correct non-Cartesian k-space trajectories. This study analyzes the impact of the gradient coil temperature of a 3T scanner on the GSTF. Methods: GSTF self- and B\(_0\)-cross-terms were acquired for a 3T Siemens scanner (Siemens Healthcare, Erlangen, Germany) using a phantom-based measurement technique. The GSTF terms were measured for various temperature states up to 45°C. The gradient coil temperatures were measured continuously utilizing 12 temperature sensors which are integrated by the vendor. Different modeling approaches were applied and compared. Results: The self-terms depend linearly on temperature, whereas the B0-cross-term does not. Effects induced by thermal variation are negligible for the phase response. The self-terms are best represented by a linear model including the three gradient coil sensors that showed the maximum temperature dependence for the three axes. The use of time derivatives of the temperature did not lead to an improvement of the model. The B\(_0\)-cross-terms can be modeled by a convolution model which considers coil-specific heat transportation. Conclusion: The temperature dependency of the GSTF was analyzed for a 3T Siemens scanner. The self- and B0-cross-terms can be modeled using a linear and convolution modeling approach based on the three main temperature sensor elements.}, language = {en} } @article{RichterWechWengetal.2020, author = {Richter, Julian A. J. and Wech, Tobias and Weng, Andreas M. and Stich, Manuel and Weick, Stefan and Breuer, Kathrin and Bley, Thorsten A. and K{\"o}stler, Herbert}, title = {Free-breathing self-gated 4D lung MRI using wave-CAIPI}, series = {Magnetic Resonance in Medicine}, volume = {84}, journal = {Magnetic Resonance in Medicine}, number = {6}, doi = {10.1002/mrm.28383}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-218075}, pages = {3223 -- 3233}, year = {2020}, abstract = {Purpose The aim of this study was to compare the wave-CAIPI (controlled aliasing in parallel imaging) trajectory to the Cartesian sampling for accelerated free-breathing 4D lung MRI. Methods The wave-CAIPI k-space trajectory was implemented in a respiratory self-gated 3D spoiled gradient echo pulse sequence. Trajectory correction applying the gradient system transfer function was used, and images were reconstructed using an iterative conjugate gradient SENSE (CG SENSE) algorithm. Five healthy volunteers and one patient with squamous cell carcinoma in the lung were examined on a clinical 3T scanner, using both sampling schemes. For quantitative comparison of wave-CAIPI and standard Cartesian imaging, the normalized mutual information and the RMS error between retrospectively accelerated acquisitions and their respective references were calculated. The SNR ratios were investigated in a phantom study. Results The obtained normalized mutual information values indicate a lower information loss due to acceleration for the wave-CAIPI approach. Average normalized mutual information values of the wave-CAIPI acquisitions were 10\% higher, compared with Cartesian sampling. Furthermore, the RMS error of the wave-CAIPI technique was lower by 19\% and the SNR was higher by 14\%. Especially for short acquisition times (down to 1 minute), the undersampled Cartesian images showed an increased artifact level, compared with wave-CAIPI. Conclusion The application of the wave-CAIPI technique to 4D lung MRI reduces undersampling artifacts, in comparison to a Cartesian acquisition of the same scan time. The benefit of wave-CAIPI sampling can therefore be traded for shorter examinations, or enhancing image quality of undersampled 4D lung acquisitions, keeping the scan time constant.}, language = {en} } @unpublished{HeidenreichGassenmaierAnkenbrandetal.2021, author = {Heidenreich, Julius F. and Gassenmaier, Tobias and Ankenbrand, Markus J. and Bley, Thorsten A. and Wech, Tobias}, title = {Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction}, edition = {accepted version}, doi = {10.1016/j.ejrad.2021.109817}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-323418}, year = {2021}, abstract = {Purpose To fully automatically derive quantitative parameters from late gadolinium enhancement (LGE) cardiac MR (CMR) in patients with myocardial infarction and to investigate if phase sensitive or magnitude reconstructions or a combination of both results in best segmentation accuracy. Methods In this retrospective single center study, a convolutional neural network with a U-Net architecture with a self-configuring framework ("nnU-net") was trained for segmentation of left ventricular myocardium and infarct zone in LGE-CMR. A database of 170 examinations from 78 patients with history of myocardial infarction was assembled. Separate fitting of the model was performed, using phase sensitive inversion recovery, the magnitude reconstruction or both contrasts as input channels. Manual labelling served as ground truth. In a subset of 10 patients, the performance of the trained models was evaluated and quantitatively compared by determination of the S{\o}rensen-Dice similarity coefficient (DSC) and volumes of the infarct zone compared with the manual ground truth using Pearson's r correlation and Bland-Altman analysis. Results The model achieved high similarity coefficients for myocardium and scar tissue. No significant difference was observed between using PSIR, magnitude reconstruction or both contrasts as input (PSIR and MAG; mean DSC: 0.83 ± 0.03 for myocardium and 0.72 ± 0.08 for scars). A strong correlation for volumes of infarct zone was observed between manual and model-based approach (r = 0.96), with a significant underestimation of the volumes obtained from the neural network. Conclusion The self-configuring nnU-net achieves predictions with strong agreement compared to manual segmentation, proving the potential as a promising tool to provide fully automatic quantitative evaluation of LGE-CMR.}, language = {en} } @article{AnkenbrandLohrSchloetelburgetal.2021, author = {Ankenbrand, Markus Johannes and Lohr, David and Schl{\"o}telburg, Wiebke and Reiter, Theresa and Wech, Tobias and Schreiber, Laura Maria}, title = {Deep learning-based cardiac cine segmentation: Transfer learning application to 7T ultrahigh-field MRI}, series = {Magnetic Resonance in Medicine}, volume = {86}, journal = {Magnetic Resonance in Medicine}, number = {4}, doi = {10.1002/mrm.28822}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257604}, pages = {2179-2191}, year = {2021}, abstract = {Purpose Artificial neural networks show promising performance in automatic segmentation of cardiac MRI. However, training requires large amounts of annotated data and generalization to different vendors, field strengths, sequence parameters, and pathologies is limited. Transfer learning addresses this challenge, but specific recommendations regarding type and amount of data required is lacking. In this study, we assess data requirements for transfer learning to experimental cardiac MRI at 7T where the segmentation task can be challenging. In addition, we provide guidelines, tools, and annotated data to enable transfer learning approaches by other researchers and clinicians. Methods A publicly available segmentation model was used to annotate a publicly available data set. This labeled data set was subsequently used to train a neural network for segmentation of left ventricle and myocardium in cardiac cine MRI. The network is used as starting point for transfer learning to 7T cine data of healthy volunteers (n = 22; 7873 images) by updating the pre-trained weights. Structured and random data subsets of different sizes were used to systematically assess data requirements for successful transfer learning. Results Inconsistencies in the publically available data set were corrected, labels created, and a neural network trained. On 7T cardiac cine images the model pre-trained on public imaging data, acquired at 1.5T and 3T, achieved DICE\(_{LV}\) = 0.835 and DICE\(_{MY}\) = 0.670. Transfer learning using 7T cine data and ImageNet weight initialization improved model performance to DICE\(_{LV}\) = 0.900 and DICE\(_{MY}\) = 0.791. Using only end-systolic and end-diastolic images reduced training data by 90\%, with no negative impact on segmentation performance (DICE\(_{LV}\) = 0.908, DICE\(_{MY}\) = 0.805). Conclusions This work demonstrates and quantifies the benefits of transfer learning for cardiac cine image segmentation. We provide practical guidelines for researchers planning transfer learning projects in cardiac MRI and make data, models, and code publicly available.}, language = {en} }