@phdthesis{Kopic2024, author = {Kopic, Eva}, title = {On the physiological role of post-translational regulation of the \(Arabidopsis\) guard cell outward rectifying potassium channel GORK}, doi = {10.25972/OPUS-34880}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-348806}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Das streng regulierte Gleichgewicht zwischen CO2-Aufnahme und Transpiration ist f{\"u}r Pflanzen essentiell und h{\"a}ngt von kontrollierten Turgor{\"a}nderungen ab, die durch die Aktivit{\"a}t verschiedener Anionen- und Kationenkan{\"a}le verursacht werden. Diese Kan{\"a}le sind Teil von Signalkaskaden, die z. B. durch Phytohormone wie ABA (Abscisins{\"a}ure) und JA (Jasmonat) ausgel{\"o}st werden, die beide bei Trockenstress in den Schließzellen wirken. Dar{\"u}ber hinaus ist bekannt, dass JA an der Reaktion der Pflanze auf Pathogenbefall oder Verwundung beteiligt ist. GORK (guard cell outward rectifying K+ channel) ist der einzige bekannte, ausw{\"a}rts gleichrichtende K+-Kanal in Schließzellen und somit f{\"u}r den K+-Efflux beim Schließen der Stomata verantwortlich. Im Rahmen dieser Arbeit konnte nachgewiesen werden, dass GORK ein wesentlicher Bestandteil des JA-induzierten Stomatschlusses ist. Dies gilt f{\"u}r beide Ausl{\"o}ser, sowohl die Blattverwundung als auch die direkte Anwendung von JA. Patch-Clamp-Experimente an Protoplasten von Schließzellen untermauerten dieses Ergebnis, indem sie GORK-K+-Ausw{\"a}rtsstr{\"o}me als direktes Ziel von JA-Signalen entlarvten. Da bekannt ist, dass zytosolische Ca2+-Signale sowohl bei ABA- als auch bei JA-Signalen eine Rolle spielen, wurde die Interaktion von GORK mit Ca2+-abh{\"a}ngigen Kinasen untersucht. Eine antagonistische Regulation von GORK durch CIPK5-CBL1/9-Komplexe und ABI2 konnte durch DEVC (double electrode voltage clamp) sowie Protein-Protein-Interaktions-Experimente identifiziert und durch in-vitro Kinase-Assays untermauert werden. Patch-Clamp-Aufzeichnungen an Protoplasten von Schließzellen der cipk5-2 Funktions-Verlust-Mutante zeigten die Bedeutung von CIPK5 f{\"u}r den JA-induzierten Stomaschluss via Aktivierung von GORK. Die Interaktion verschiedener CDPKs (Ca2+-abh{\"a}ngige Proteinkinasen) mit GORK wurde ebenfalls untersucht. Neben der Ca2+-Signal{\"u}bertragung ist auch die Produktion von ROS (reaktive Sauerstoffspezies) f{\"u}r die ABA- und MeJA-Signal{\"u}bertragung von Bedeutung. In DEVC-Experimenten konnte ein reversibler Effekt von ROS auf die GORK-Kanalaktivit{\"a}t nachgewiesen werden, was ein Teil der Erkl{\"a}rung f{\"u}r diese ROS-Effekte bei ABA- und MeJA-Signalen sein k{\"o}nnte.}, subject = {Spalt{\"o}ffnung}, language = {en} } @phdthesis{Heinig2014, author = {Heinig, Katja}, title = {Massenspektrometrische Identifizierung und Charakterisierung von posttranslationalen Modifikationen bei pathologischen freien Antik{\"o}rperleichtketten}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108275}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In dieser Arbeit wurden die freien Antik{\"o}rperleichtketten von Patienten mit Multiplen Myelom bzw. mit Multiplen Myelom und AL-Amyloidose auf das Auftreten von posttranslationalen Modifikationen mit der Hilfe von MS/MS-Spektren analysiert. Beide Patientengruppen zeichnen sich durch eine {\"U}berproduktion von monoklonalen Antik{\"o}rperleichtketten aus, wobei diese bei Multiplen-Myelom-Patienten l{\"o}slich und bei den AL-Amyloidose-Patienten unl{\"o}slich vorliegen. Zur Vorbereitung der massenspektrometrischen Messungen wurden die FLCs aus den Knochenmarks{\"u}berst{\"a}nden der Patienten isoliert. Daf{\"u}r wurde eine 2-Schritt-Aufarbeitungsmethode etabliert, bei der mit Hilfe einer Affinit{\"a}tschromatographie und einer pr{\"a}parativen SDS-PAGE die FLCs aus einer komplexen Matrix isoliert werden konnten. Mit Hilfe der MS/MS-Messungen konnten Sulfonierungen, Methylierungen, Acetylierungen, Oxidierungen und eine O-Glykosylierung identifiziert werden. In einem weiteren Schritt wurden mittels Varianzanalyse Sequenzen von AL-Amyloidose- und Multiplen-Myelom-Patienten sowie von Kontrollprobanten hinsichtlich der Verteilung der Aminos{\"a}uren statistisch analysiert. Dabei konnten mehrere Stellen im FLC-Peptid identifiziert werden, an denen bestimmte Aminos{\"a}uren in Abh{\"a}ngigkeit der Subgruppe signifikant unterschiedlich vorkommen.}, subject = {Massenspektrometrie}, language = {de} } @phdthesis{ElBashir2017, author = {ElBashir, Rasha}, title = {Development of New Mass Spectrometry-based Methods for the Analysis of Posttranslational Modifications}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153731}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Posttranslational modifications (PTMs) play a crucial role in many cellular processes. They are reversible, dynamic, and highly regulated events that alter the properties of proteins and increase their functional diversity. The identification and quantification of PTMs are critical for deciphering the molecular mechanisms of PTMs-related biological processes and disease treatment and prevention. Two of the most common and important PTMs that regulate many protein functions are acetylation and phosphorylation. An important role of acetylation is the regulation of DNA/RNA-protein interactions. A prominent example for this are histones, whose tail regions are lysine-rich and can be highly acetylated at their N-terminal domain. In spite of the utmost importance of this PTM, methods that allow the accurate measuring the site-specific acetylation degree are missing. One of the challenges in quantifying the acetylation degree at an individual lysine residue of the histones N-termini is the occurrence of multiple lysines in close proximity. Herein, we describe the development of the "Fragment Ion Patchwork Quantification," a new mass spectrometry-based approach for the highly accurate quantification of sites-pecific acetylation degrees. This method combines 13C1-acetyl derivatization on the protein level, proteolysis by low-specificity proteases and quantification on the fragment ion level. Acetylation degrees are determined from the isotope patterns of acetylated b and y ions. We have shown that this approach allows determining the site-specific acetylation degrees of all lysine residues for all core histones of Trypanosoma brucei. In addition, we demonstrate the use of this approach to identify the substrate sites of histone acetyltransferases and to monitor the changes in acetylation of the histones of canonical nucleosome and transcription start site nucleosomes. Phosphorylation is one of the most common and most important PTMs. The analysis of the human genome showed that there are about 518 kinases and more than 500,000 phosphorylation sites are believed to exist in the cellular proteome. Protein phosphorylation plays a crucial role in signaling many different cell processes, such as intercellular communication, cell growth, differentiation of proliferation and apoptosis. Whereas MS-based identification and relative quantification of singly phosphorylated peptides have been greatly improved during the last decade, and large-scale analysis of thousands of phosphopeptides can now be performed on a routine-base, the analysis of multi-phosphorylated peptides is still lagging vastly behind. The low pKa value of phosphate group and the associated negative charge are considered the major source of the problems with the analysis of multi-phosphorylated peptides. These problems include the formation of phosphopeptide-metal complexes during liquid chromatography (e.g. Fe 3+), which leads to a drastic deterioration of the chromatographic properties of these peptides (peak tailing), the decreased ionization efficiencies of phosphorylated peptides compared to their unphosphorylated counterparts, the labile nature of phosphate during CID/HCD fragmentation, and the unsuitability of low-charged phosphopeptides for ETD fragmentation are the most important factors that hinder phosphorylation analysis by LC-MS/MS. Here we aimed to develop a method for improving the identification of multi-phosphorylated peptides as well as the localization of phosphorylation sites by charge-reversal derivatization of the phosphate groups. This method employs a carbodiimide-mediated phosphoramidation to converted the phosphates to stable aromatic phosphoramidates. This chemical modification of phosphosite(s) reversed the negative charge of the phosphate group(s) and increased the number of the positive charges within the phosphopeptide. This modification prevented the formation of phosphopeptide-metal ion complexes that dramatically decreases or completely diminishes the signal intensity of protonated phosphopeptides, specifically multi-phosphorylated peptides. Furthermore, the increased net charge the (phospho-)peptides made them suitable for ETD fragmentation, which generated a high number of fragment ions with high intensities that led to a better phosphopeptide identification and localization of phosphosite(s) with high confidence.}, subject = {LC-MS}, language = {en} }