@phdthesis{Plentinger2009, author = {Plentinger, Florian}, title = {Systematic Model Building with Flavor Symmetries}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38077}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die Beobachtung von Neutrinomassen und Leptonenmischungen haben gezeigt, dass das Standard-Modell unvollst{\"a}ndig ist. Im Zuge dieser Entdeckung tauchen neue Fragestellungen auf: warum sind die Neutrinomassen so klein, wie sieht ihre Massenhierarchie aus, warum sind die Mischungen im Quark- und Leptonen-Sektor so unterschiedlich oder welche Form hat der Higgs-Sektor. Um diese Fragen zu beantworten und um zuk{\"u}nftige experimentelle Daten vorherzusagen, werden verschiedene Ans{\"a}tze betrachtet. Besonders interessant sind Grand Unified Theories, wie SU(5) oder SO(10). GUTs sind vertikale Symmetrien, da sie die SM-Teilchen in Multipletts vereinheitlichen und {\"u}blicherweise neue Elementarteilchen vorhersagen, die durch den Seesaw-Mechanismus, auf nat{\"u}rliche Weise die Kleinheit der Neutrinomassen erkl{\"a}ren. Dar{\"u}berhinaus sind auch horizontale Symmetrien, d.h. Flavor-Symmetrien, welche auf den Generationen-Raum der SM-Teilchen wirken, interessant. Sie k{\"o}nnen die Quark- und Leptonen-Massenhierarchien, sowie die unterschiedlichen Quark- und Leptonenmischungen, erkl{\"a}ren. Ausserdem beeinflussen Flavor-Symmetrien massgeblich den Higgs-Sektor und sagen bestimmte Formen von Massenmatrizen vorher. Diese hohe Vorhersagekraft machen GUTs und Flavor-Symmetrien sowohl f{\"u}r Theoretiker, als auch f{\"u}r Experimentalphysiker interessant. Solche Erweiterungen des SM k{\"o}nnen mit weiteren Konzepten wie Supersymmetrie oder extra Dimensionen kombiniert werden. Hinzu kommt, dass sie f{\"u}r gew{\"o}hnlich Auswirkungen auf die beobachtete Materie-Antimaterie Asymmetrie des Universums haben und einen dunkle Materie Kandidaten beinhalten k{\"o}nnen. Im Allgemeinen sagen sie auch die seltene Leptonenzahl verletzenden Zerf{\"a}lle mu -> e gamma, tau -> mu gamma und tau -> e gamma vorher, die stark von Experimenten eingeschr{\"a}nkt sind, aber m{\"o}glicherweise in der Zukunft beobachtet werden. In dieser Arbeit kombinieren wir all diese Zug{\"a}nge, d.h. GUTs, den Seesaw-Mechanismus und Flavor-Symmetrien. Dr{\"u}ber hinaus ist unser Anliegen einen systematischen Zugang zum Modellbau zu entwickeln und durchzuf{\"u}hren, sowie die Suche nach ph{\"a}nomenologischen Implikationen. Dies stellt eine neue Sichtweise im Modellbau dar, da es uns erlaubt bestimmte Modelle durch ihre theoretischen und ph{\"a}nomenologischen Vorhersagen zu filtern. D.h. wir k{\"o}nnen weitere Einschr{\"a}nkungen an Modelle fordern, um ein bestimmtes auszuw{\"a}hlen. Die Ergebnisse unserer Herangehensweise sind zum Beispiel mannigfaltige Leptonen-Flavor- und GUT-Modelle, ein systematischer Scan von Leptonenzahl verletzenden Prozessen, neue Massenmatrizen, eine neues Vest{\"a}ndnis der Leptonenmischungswinkel, eine Verallgemeinerung der Idee der Quark-Leptonen-Komplementarit{\"a}t theta_12=pi/4-epsilon/sqrt{2} und zum ersten Mal die QLC-Relation in einer SU(5) GUT.}, subject = {Symmetrie}, language = {en} } @phdthesis{Eck2024, author = {Eck, Philipp}, title = {Symmetry Breaking and Spin-Orbit Interaction on the Triangular Lattice}, doi = {10.25972/OPUS-35918}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-359186}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Since the prediction of the quantum spin Hall effect in graphene by Kane and Mele, \(Z_2\) topology in hexagonal monolayers is indissociably linked to high-symmetric honeycomb lattices. This thesis breaks with this paradigm by focusing on topological phases in the fundamental two-dimensional hexagonal crystal, the triangular lattice. In contrast to Kane-Mele-type systems, electrons on the triangular lattice profit from a sizable, since local, spin-orbit coupling (SOC) and feature a non-trivial ground state only in the presence of inversion symmetry breaking. This tends to displace the valence charge form the atomic position. Therefore, all non-trivial phases are real-space obstructed. Inspired by the contemporary conception of topological classification of electronic systems, a comprehensive lattice and band symmetry analysis of insulating phases of a \(p\)-shell on the triangular lattice is presented. This reveals not only the mechanism at the origin of band topology, the competition of SOC and symmetry breaking, but sheds also light on the electric polarization arising from a displacement of the valence charge centers from the nuclei, i. e., real-space obstruction. In particular, the competition of SOC versus horizontal and vertical reflection symmetry breaking gives rise to four topologically distinct insulating phases: two kinds of quantum spin Hall insulators (QSHI), an atomic insulator and a real-space obstructed higher-order topological insulator. The theoretical analysis is complemented with state-of-the-art first principles calculations and experiments on trigonal monolayer adsorbate systems. This comprises the recently discovered triangular QSHI indenene, formed by In atoms, and focuses on its topological classification and real-space obstruction. The analysis reveals Kane-Mele-type valence bands which profit from the atomic SOC of the triangular lattice. The realization of a HOTI is proposed by reducing SOC by considering lighter adsorbates. Further the orbital Rashba effect is analyzed in AgTe, a consequence of mirror symmetry breaking, the formation of local angular momentum polarization and SOC. As an outlook beyond topology, the Fermi surface and electronic susceptibility of Group V adsorbates on silicon carbide are investigated. In summary, this thesis elucidates the interplay of symmetry breaking and SOC on the triangular lattice, which can promote non-trivial insulating phase.}, subject = {Topologie}, language = {en} }