@article{KuemmelLindenberger2020, author = {K{\"u}mmel, Reiner and Lindenberger, Dietmar}, title = {Energy, entropy, constraints, and creativity in economic growth and crises}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {10}, issn = {1099-4300}, doi = {10.3390/e22101156}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216275}, year = {2020}, abstract = {The neoclassical mainstream theory of economic growth does not care about the First and the Second Law of Thermodynamics. It usually considers only capital and labor as the factors that produce the wealth of modern industrial economies. If energy is taken into account as a factor of production, its economic weight, that is its output elasticity, is assigned a meager magnitude of roughly 5 percent, according to the neoclassical cost-share theorem. Because of that, neoclassical economics has the problems of the "Solow Residual", which is the big difference between observed and computed economic growth, and of the failure to explain the economic recessions since World War 2 by the variations of the production factors. Having recalled these problems, we point out that technological constraints on factor combinations have been overlooked in the derivation of the cost-share theorem. Biophysical analyses of economic growth that disregard this theorem and mend the neoclassical deficiencies are sketched. They show that energy's output elasticity is much larger than its cost share and elucidate the existence of bidirectional causality between energy conversion and economic growth. This helps to understand how economic crises have been triggered and overcome by supply-side and demand-side actions. Human creativity changes the state of economic systems. We discuss the challenges to it by the risks from politics and markets in conjunction with energy sources and technologies, and by the constraints that the emissions of particles and heat from entropy production impose on industrial growth in the biosphere.}, language = {en} } @article{Kuemmel2016, author = {K{\"u}mmel, Reiner}, title = {The Impact of Entropy Production and Emission Mitigation on Economic Growth}, series = {Entropy}, volume = {18}, journal = {Entropy}, number = {3}, doi = {10.3390/e18030075}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163185}, pages = {75}, year = {2016}, abstract = {Entropy production in industrial economies involves heat currents, driven by gradients of temperature, and particle currents, driven by specific external forces and gradients of temperature and chemical potentials. Pollution functions are constructed for the associated emissions. They reduce the output elasticities of the production factors capital, labor, and energy in the growth equation of the capital-labor-energy-creativity model, when the emissions approach their critical limits. These are drawn by, e.g., health hazards or threats to ecological and climate stability. By definition, the limits oblige the economic actors to dedicate shares of the available production factors to emission mitigation, or to adjustments to the emission-induced changes in the biosphere. Since these shares are missing for the production of the quantity of goods and services that would be available to consumers and investors without emission mitigation, the "conventional" output of the economy shrinks. The resulting losses of conventional output are estimated for two classes of scenarios: (1) energy conservation; and (2) nuclear exit and subsidies to photovoltaics. The data of the scenarios refer to Germany in the 1980s and after 11 March 2011. For the energy-conservation scenarios, a method of computing the reduction of output elasticities by emission abatement is proposed.}, language = {en} } @article{Bauer2020, author = {Bauer, Wolfgang Rudolf}, title = {Impact of Interparticle Interaction on Thermodynamics of Nano-Channel Transport of Two Species}, series = {Entropy}, volume = {22}, journal = {Entropy}, number = {4}, issn = {1099-4300}, doi = {10.3390/e22040376}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-203240}, year = {2020}, abstract = {Understanding the function and control of channel transport is of paramount importance for cell physiology and nanotechnology. In particular, if several species are involved, the mechanisms of selectivity, competition, cooperation, pumping, and its modulation need to be understood. What lacks is a rigorous mathematical approach within the framework of stochastic thermodynamics, which explains the impact of interparticle in-channel interactions on the transport properties of the respective species. To achieve this, stochastic channel transport of two species is considered in a model, which different from mean field approaches, explicitly conserves the spatial correlation of the species within the channel by analysis of the stochastic dynamics within a state space, the elements of which are the channel's spatial occupation states. The interparticle interactions determine the stochastic transitions between these states. Local flow and entropy production in this state space reveal the respective particle flows through the channel and the intensity of the Brownian ratchet like rectifying forces, which these species exert mutually on each other, together with its thermodynamic effectiveness and costs. Perfect coupling of transport of the two species is realized by an attractive empty channel and strong repulsive forces between particles of the same species. This confines the state space to a subspace with circular topology, in which the concentration gradients as thermodynamic driving forces act in series, and channel flow of both species becomes equivalent. For opposing concentration gradients, this makes the species with the stronger gradient the driving, positive entropy producing one; the other is driven and produces negative entropy. Gradients equal in magnitude make all flows vanish, and thermodynamic equilibrium occurs. A differential interparticle interaction with less repulsive forces within particles of one species but maintenance of this interaction for the other species adds a bypass path to this circular subspace. On this path, which is not involved in coupling of the two species, a leak flow of the species with less repulsive interparticle interaction emerges, which is directed parallel to its concentration gradient and, hence, produces positive entropy here. Different from the situation with perfect coupling, appropriate strong opposing concentration gradients may simultaneously parallelize the flow of their respective species, which makes each species produce positive entropy. The rectifying potential of the species with the bypass option is diminished. This implies the existence of a gradient of the other species, above which its flow and gradient are parallel for any gradient of the less coupled species. The opposite holds for the less coupled species. Its flow may always be rectified and turned anti-parallel to its gradient by a sufficiently strong opposing gradient of the other one.}, language = {en} }