@phdthesis{Slobodskyy2005, author = {Slobodskyy, Anatoliy}, title = {Diluted magnetic semiconductor Resonant Tunneling Structures for spin manipulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18263}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work we investigate magnetic resonant tunneling diode (RTD) structures for spin manipulation. All-II-VI semiconductor RTD structures based on [Zn,Be]Se are grown by molecular beam epitaxy. We observe a strong, magnetic field induced, splitting of the resonance peaks in the I-V characteristics of RTDs with [Zn,Mn]Se diluted magnetic semiconductors (DMS) quantum well. The splitting saturates at high fields and has strong temperature dependence. A phonon replica of the resonance is also observed and has similar behaviour to the peak. We develop a model based on the giant Zeeman splitting of the spin levels in the DMS quantum well in order to explain the magnetic field induced behaviour of the resonance.}, subject = {Resonanz-Tunneldiode}, language = {en} } @article{RothmayrGuarinCastroHartmannetal.2022, author = {Rothmayr, Florian and Guarin Castro, Edgar David and Hartmann, Fabian and Knebl, Georg and Schade, Anne and H{\"o}fling, Sven and Koeth, Johannes and Pfenning, Andreas and Worschech, Lukas and Lopez-Richard, Victor}, title = {Resonant tunneling diodes: mid-infrared sensing at room temperature}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {6}, issn = {2079-4991}, doi = {10.3390/nano12061024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267152}, year = {2022}, abstract = {Resonant tunneling diode photodetectors appear to be promising architectures with a simple design for mid-infrared sensing operations at room temperature. We fabricated resonant tunneling devices with GaInAsSb absorbers that allow operation in the 2-4 μm range with significant electrical responsivity of 0.97 A/W at 2004 nm to optical readout. This paper characterizes the photosensor response contrasting different operational regimes and offering a comprehensive theoretical analysis of the main physical ingredients that rule the sensor functionalities and affect its performance. We demonstrate how the drift, accumulation, and escape efficiencies of photogenerated carriers influence the electrostatic modulation of the sensor's electrical response and how they allow controlling the device's sensing abilities.}, language = {en} } @article{PfenningKruegerJabeenetal.2022, author = {Pfenning, Andreas and Kr{\"u}ger, Sebastian and Jabeen, Fauzia and Worschech, Lukas and Hartmann, Fabian and H{\"o}fling, Sven}, title = {Single-photon counting with semiconductor resonant tunneling devices}, series = {Nanomaterials}, volume = {12}, journal = {Nanomaterials}, number = {14}, issn = {2079-4991}, doi = {10.3390/nano12142358}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-281922}, year = {2022}, abstract = {Optical quantum information science and technologies require the capability to generate, control, and detect single or multiple quanta of light. The need to detect individual photons has motivated the development of a variety of novel and refined single-photon detectors (SPDs) with enhanced detector performance. Superconducting nanowire single-photon detectors (SNSPDs) and single-photon avalanche diodes (SPADs) are the top-performer in this field, but alternative promising and innovative devices are emerging. In this review article, we discuss the current state-of-the-art of one such alternative device capable of single-photon counting: the resonant tunneling diode (RTD) single-photon detector. Due to their peculiar photodetection mechanism and current-voltage characteristic with a region of negative differential conductance, RTD single-photon detectors provide, theoretically, several advantages over conventional SPDs, such as an inherently deadtime-free photon-number resolution at elevated temperatures, while offering low dark counts, a low timing jitter, and multiple photon detection modes. This review article brings together our previous studies and current experimental results. We focus on the current limitations of RTD-SPDs and provide detailed design and parameter variations to be potentially employed in next-generation RTD-SPD to improve the figure of merits of these alternative single-photon counting devices. The single-photon detection capability of RTDs without quantum dots is shown.}, language = {en} } @phdthesis{Hartmann2012, author = {Hartmann, Fabian}, title = {Elektrooptische Transporteigenschaften und stochastisch aktivierte Prozesse Resonanter Tunneldioden}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90876}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Im Rahmen der vorliegenden Arbeit wurden elektrooptische Transporteigenschaften und stochastisch aktivierte Prozesse Resonanter Tunneldioden (RTDs) bei Raumtemperatur untersucht. Die RTDs wurden auf dem III-V Halbleitermaterialsystem AlGaAs/GaAs durch Molekularstrahlepitaxie, Elektronenstrahllithographie und trockenchemischen {\"A}tztechniken hergestellt. Im Bereich des negativen differentiellen Leitwerts konnte bistabi-les Schalten und hierbei stochastisch aktivierte Dynamik nichtlinearer Systeme untersucht werden. Die Fl{\"a}chenabh{\"a}ngigkeit der {\"A}tzrate konnte ausgenutzt werden, um RTDs mit einem Stamm und zwei Transport{\"a}sten zu realisieren, welche hinsichtlich ihrer optischen und elektrischen Eigenschaften untersucht wurden. Im ersten experimentellen Abschnitt 3.1 werden die elektrischen Transporteigenschaften Resonanter Tunneldioden bei Raum-temperatur und die Fl{\"a}chenabh{\"a}ngigkeit des koh{\"a}renten und nicht-koh{\"a}renten Elektronen-transports analysiert. Die Realisierung universeller logischer Gatter (NOR und NAND) und deren Rekonfigurierbarkeit durch einen externen Kontrollparameter wird in Abschnitt 3.2 gezeigt. In Abschnitt 3.3 wird die Lichtsensitivit{\"a}t Resonanter Tunneldioden als Photode-tektoren f{\"u}r den sichtbaren Wellenl{\"a}ngenbereich und in Abschnitt 3.4 f{\"u}r die Telekommu-nikationswellenl{\"a}nge bei λ = 1,3 µm demonstriert.}, subject = {Resonanz-Tunneldiode}, language = {de} }