@phdthesis{Weissflog2011, author = {Weißflog, Lena}, title = {Molecular Genetics of Emotional Dysregulation in Attention-Deficit/Hyperactivity Disorder}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69345}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a genetically complex childhood onset neurodevelopmental disorder which is highly persistent into adulthood. Several chromo-somal regions associated with this disorder were identified previously in genome-wide linkage scans, association (GWA) and copy number variation (CNV) studies. In this work the results of case-control and family-based association studies using a can-didate gene approach are presented. For this purpose, possible candidate genes for ADHD have been finemapped using mass array-based SNP genotyping. The genes KCNIP4, CDH13 and DIRAS2 have been found to be associated with ADHD and, in addition, with cluster B and cluster C personality disorders (PD) which are known to be related to ADHD. Most of the associations found in this work would not withstand correction for multiple testing. However, a replication in several independent populations has been achieved and in conjunction with previous evidence from linkage, GWA and CNV studies, it is assumed that there are true associations between those genes and ADHD. Further investigation of DIRAS2 by quantitative real-time PCR (qPCR) revealed expression in the hippocampus, cerebral cortex and cerebellum of the human brain and a significant increase in Diras2 expression in the mouse brain during early development. In situ hybrid-izations on murine brain slices confirmed the results gained by qPCR in the human brain. Moreover, Diras2 is expressed in the basolateral amygdala, structures of the olfactory system and several other brain regions which have been implicated in the psychopatholo-gy of ADHD. In conclusion, the results of this work provide further support to the existence of a strong genetic component in the pathophysiology of ADHD and related disorders. KCNIP4, CDH13 and DIRAS2 are promising candidates and need to be further examined to get more knowledge about the neurobiological basis of this common disease. This knowledge is essential for understanding the molecular mechanisms underlying the emergence of this disorder and for the development of new treatment strategies.}, subject = {Aufmerksamkeits-Defizit-Syndrom}, language = {en} } @phdthesis{Weiland2010, author = {Weiland, Romy}, title = {Facial reactions in response to gustatory and olfactory stimuli in healthy adults, patients with eating disorders, and patients with attention-deficit hyperactivity disorder}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51759}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The aim of this project was to investigate whether reflex-like innate facial reactions to tastes and odors are altered in patients with eating disorders. Qualitatively different tastes and odors have been found to elicit specific facial expressions in newborns. This specificity in newborns is characterized by positive facial reactions in response to pleasant stimuli and by negative facial reactions in response to unpleasant stimuli. It is, however, unclear, whether these specific facial displays remain stable during ontogeny (1). Despite the fact that several studies had shown that taste-and odor-elicited facial reactions remain quite stable across a human's life-span, the specificity of research questions, as well as different research methods, allow only limited comparisons between studies. Moreover, the gustofacial response patterns might be altered in pathological eating behavior (2). To date, however, the question of whether dysfunctional eating behavior might alter facial activity in response to tastes and odors has not been addressed. Furthermore, changes in facial activity might be linked to deficient inhibitory facial control (3). To investigate these three research questions, facial reactions in response to tastes and odors were assessed. Facial reactions were analyzed using the Facial Action Coding System (FACS, Ekman \& Friesen, 1978; Ekman, Friesen, \& Hager, 2002) and electromyography.}, subject = {Mimik}, language = {en} } @phdthesis{Peters2023, author = {Peters, Katharina}, title = {Biological Substrates of Waiting Impulsivity in Children and Adolescents with and without ADHD}, doi = {10.25972/OPUS-24636}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246368}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Focus of the present work were the questions whether and how the concept of waiting impulsivity (WI), defined as the ability to regulate a response in anticipation of reward and measured by the 4-choice serial reaction time task (4-CSRTT), may contribute to our understanding of Attention-Deficit/Hyperactivity Disorder (ADHD) and its neurobiological underpinnings. To address this topic, two studies were conducted: in a first study, the relationship be-tween 4-CSRTT behavioral measures, neural correlates and ADHD symptom domains, i.e. inattention (IA) and hyperactivity/impulsivity (H/I) was explored in a pooled sample of 90 children and adolescents with (n=44) and without (n=46) ADHD diagnosis. As ex-pected, IA was associated with dorsolateral prefrontal brain regions linked with executive functions and attentional control, which was evident on the structural and the functional level. Higher levels of both IA and H/I covaried with decreased activity in the right ven-trolateral prefrontal cortex (PFC), a central structure for response inhibition. Moderation analyses revealed that H/I-related decreased activation in this region did not map linearly on difficulties on the behavioral level: brain activation was a significant predictor of task accuracy only, when H/I symptoms were low/absent but not for clinically relevant ADHD symptoms. Further, H/I was implicated in dysfunctional top-down control of reward eval-uation. Both symptom domains correlated positively with hippocampus (HC) activity in anticipation of reward. In addition, for high H/I symptoms, greater activation in the HC was found to correlate with higher motivation on the behavioral level, indicating that rein-forcement-learning and/or contingency awareness may contribute to altered reward pro-cessing in ADHD patients. In a second study, the possible serotonergic modulation of WI and the ADHD-WI relation-ship was addressed in a sub-sample comprising 86 children and adolescents of study I. The effects of a functional variant in the gene coding for the rate-limiting enzyme in the synthesis of brain serotonin on behavior and structure or function of the WI-network was investigated. Moderation analyses revealed that on the behavioral level, a negative corre-lation between accuracy and IA was found only in GG-homozygotes, whereas no signifi-cant relationship emerged for carriers of the T-allele. This is in line with previous reports of differential effects of serotonergic modulation on attentional performance depending on the presence of ADHD symptoms. A trend-wise interaction effect of genotype and IA for regional volume of the right middle frontal gyrus was interpreted as a hint towards an involvement of the PFC in this relationship, although a more complex mechanism includ-ing developmental effects can be assumed. In addition, interaction effects of genotype and IA were found for brain activation in the amygdala (AMY) und HC during perfor-mance of the 4-CSRTT, while another interaction was found for H/I symptoms and geno-type for right AMY volume. These findings indicate a serotonergic modulation of coding of the emotional value of reward during performance of the 4-CSRTT that varies de-pending on the extent of psychopathology-associated traits. Taken together, it was shown that the 4-CSRTT taps distinct domains of impulsivity with relevance to ADHD symptomatology: (proactive) response inhibition difficulties in relation with anticipation of reward. Furthermore, the two symptom domains, IA and H/I, contrib-ute differently to WI, which emphasizes the need to distinguish both in the research of ADHD. The results of study II emphasized the relevance of serotonergic transmission especially for attentional control and emotional processing. Although the present findings need replication and further refinement in more homogenous age groups, the use of the 4-CSRTT with a dimensional approach is a very promising strategy, which will hopefully extend our understanding of impulsivity-related mental disorders in the future.}, subject = {Aufmerksamkeitsdefizit-Syndrom}, language = {en} } @phdthesis{Mortimer2021, author = {Mortimer, Niall Patrick}, title = {ADHD Genetics in Mouse and Man}, doi = {10.25972/OPUS-23626}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236265}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder with an estimated heritability of around 70\%. In order to fully understand ADHD biology it is necessary to incorporate multiple different types of research. In this thesis, both human and animal model research is described as both lines of research are required to elucidate the aetiology of ADHD and development new treatments. The role of a single gene, Adhesion G protein-coupled receptor L3 (ADGRL3) was investigated using a knockout mouse model. ADGRL3 has putative roles in neuronal migration and synapse function. Various polymorphisms in ADGRL3 have been linked with an increased risk of attention deficit/hyperactivity disorder (ADHD) in human studies. Adgrl3-deficient mice were examined across multiple behavioural domains related to ADHD: locomotive activity, visuospatial and recognition memory, gait impulsivity, aggression, sociability and anxiety-like behaviour. The transcriptomic alterations caused by Adgrl3-depletion were analysed by RNA-sequencing of three ADHD-relevant brain regions: prefrontal cortex (PFC), hippocampus and striatum. Increased locomotive activity in Adgrl3-/- mice was observed across all tests with the specific gait analysis revealing subtle gait abnormalities. Spatial memory and learning domains were also impaired in these mice. Increased levels of impulsivity and sociability accompanying decreased aggression were also detected. None of these alterations were observed in Adgrl3+/- mice. The numbers of genes found to exhibit differential expression was relatively small in all brain regions sequenced. The absence of large scale gene expression dysregulation indicates a specific pathway of action, rather than a broad neurobiological perturbation. The PFC had the greatest number of differentially expressed genes and gene-set analysis of differential expression in this brain region detected a number of ADHD-relevant pathways including dopaminergic synapses as well as cocaine and amphetamine addiction. The most dysregulated gene in the PFC was Slc6a3 which codes for the dopamine transporter, a molecule vital to current pharmacological treatment of ADHD. The behavioural and transcriptomic results described in this thesis further validate Adgrl3 constitutive knockout mice as an experimental model of ADHD and provide neuroanatomical targets for future studies involving ADGRL3 modified animal models. The study of ADHD risk genes such as ADGRL3 requires the gene to be first identified using human studies. These studies may be genome based such as genome wide association studies (GWAS) or transcriptome based using microarray or RNA sequencing technology. To explore ADHD biology in humans the research described in this thesis includes both GWAS and trancriptomic data. A two-step transcriptome profiling was performed in peripheral blood mononuclear cells (PBMCs) of 143 ADHD subjects and 169 healthy controls. We combined GWAS and expression data in an expression-based Polygenic Risk Score (PRS) analysis in a total sample of 879 ADHD cases and 1919 controls from three different datasets. Through this exploratory study we found eight differentially expressed genes in ADHD and no support for the genetic background of the disorder playing a role in the aberrant expression levels identified. These results highlight promising candidate genes and gene pathways for ADHD and support the use of peripheral tissues to assess gene expression signatures for ADHD. This thesis illustrates how both human and animal model research is required to increase our understanding of ADHD. The animal models provide biological insight into the targets identified in human studies and may themselves provide further relevant gene targets. Only by combining research from disparate sources can we develop the thorough understanding on ADHD biology required for treatment development, which is the ultimate goal of translational science research.}, language = {en} } @phdthesis{Merker2014, author = {Merker, S{\"o}ren}, title = {Genome-wide screenings in attention-deficit/hyperactivity disorder (ADHD): investigation of novel candidate genes SLC2A3 and LPHN3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-100129}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent childhood-onset neurodevelopmental disorder that involves a substantial risk of persisting into adolescence and adulthood. A number of genome-wide screening studies in ADHD have been conducted in recent years, giving rise to the discovery of several variants at distinct chromosomal loci, thus emphasising the genetically complex and polygenic nature of this disorder. Accordingly, promising novel candidate genes have emerged, such as the gene encoding the glucose transporter isoform 3 (SLC2A3) and the gene encoding the latrophilin isoform 3 (LPHN3). In this thesis, both genes were investigated in form of two separated projects. The first focused on SLC2A3 polymorphisms associated with ADHD and their potential physiological impact. For this purpose, gene expression analyses in peripheral cell models were performed as well as functional EEG measurements in humans. The second project concerned the murine gene Lphn3 including the goal of developing a mouse line containing a genetically modified Lphn3 with conditional knockout potential. In this respect, a specific DNA vector was applied to target the Lphn3 gene locus in murine embryonic stem (ES) cells as a prerequisite for the generation of appropriate chimeric mice. The results of the first project showed that SLC2A3 duplication carriers displayed increased SLC2A3 mRNA expression in peripheral blood cells and significantly altered event-related potentials (ERPs) during tests of cognitive response control and working memory, possibly involving changes in prefrontal brain activity and memory processing. Interestingly, ADHD patients with the rs12842 T-allele, located within and tagging the SLC2A3 gene, also exhibited remarkable effects during these EEG measurements. However, such effects reflected a reversed pattern to the aforementioned SLC2A3 duplication carriers with ADHD, thus indicative of an opposed molecular mechanism. Besides, it emerged that the impact of the aforementioned SLC2A3 variants on different EEG parameters was generally much more pronounced in the group of ADHD patients than the healthy control group, implying a considerable interaction effect. Concerning the second project, preliminary results were gathered including the successful targeting of Lphn3 in murine ES cells as well as the production of highly chimeric, phenotypically unremarkable and mostly fertile mouse chimeras. While germline transmission of the modified Lphn3 allele has not yet occurred, there are still several newborn chimeric mice that will be tested in the near future. In conclusion, the findings suggest that SLC2A3 variants associated with ADHD are accompanied by transcriptional and functional changes in humans. Future research will help to elucidate the molecular network and neurobiological basis involved in these effects and apparently contributing to the complex clinical picture of ADHD. Moreover, given the increasing number of publications concerning latrophilins in recent years and the multitude of research opportunities provided by a conditional knockout of Lphn3 in mice, the establishment of a respective mouse line, which currently is in progress, constitutes a promising approach for the investigation of this gene and its role in ADHD.}, subject = {Genexpression}, language = {en} } @phdthesis{Lueffe2023, author = {L{\"u}ffe, Teresa Magdalena}, title = {Behavioral and pharmacological validation of genetic zebrafish models for ADHD}, doi = {10.25972/OPUS-25716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257168}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Attention-deficit/hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder described in psychiatry today. ADHD arises during early childhood and is characterized by an age-inappropriate level of inattention, hyperactivity, impulsivity, and partially emotional dysregulation. Besides, substantial psychiatric comorbidity further broadens the symptomatic spectrum. Despite advances in ADHD research by genetic- and imaging studies, the etiopathogenesis of ADHD remains largely unclear. Twin studies suggest a heritability of 70-80 \% that, based on genome-wide investigations, is assumed to be polygenic and a mixed composite of small and large, common and rare genetic variants. In recent years the number of genetic risk candidates is continuously increased. However, for most, a biological link to neuropathology and symptomatology of the patient is still missing. Uncovering this link is vital for a better understanding of the disorder, the identification of new treatment targets, and therefore the development of a more targeted and possibly personalized therapy. The present thesis addresses the issue for the ADHD risk candidates GRM8, FOXP2, and GAD1. By establishing loss of function zebrafish models, using CRISPR/Cas9 derived mutagenesis and antisense oligonucleotides, and studying them for morphological, functional, and behavioral alterations, it provides novel insights into the candidate's contribution to neuropathology and ADHD associated phenotypes. Using locomotor activity as behavioral read-out, the present work identified a genetic and functional implication of Grm8a, Grm8b, Foxp2, and Gad1b in ADHD associated hyperactivity. Further, it provides substantial evidence that the function of Grm8a, Grm8b, Foxp2, and Gad1b in activity regulation involves GABAergic signaling. Preliminary indications suggest that the three candidates interfere with GABAergic signaling in the ventral forebrain/striatum. However, according to present and previous data, via different biological mechanisms such as GABA synthesis, transmitter release regulation, synapse formation and/or transcriptional regulation of synaptic components. Intriguingly, this work further demonstrates that the activity regulating circuit, affected upon Foxp2 and Gad1b loss of function, is involved in the therapeutic effect mechanism of methylphenidate. Altogether, the present thesis identified altered GABAergic signaling in activity regulating circuits in, presumably, the ventral forebrain as neuropathological underpinning of ADHD associated hyperactivity. Further, it demonstrates altered GABAergic signaling as mechanistic link between the genetic disruption of Grm8a, Grm8b, Foxp2, and Gad1b and ADHD symptomatology like hyperactivity. Thus, this thesis highlights GABAergic signaling in activity regulating circuits and, in this context, Grm8a, Grm8b, Foxp2, and Gad1b as exciting targets for future investigations on ADHD etiopathogenesis and the development of novel therapeutic interventions for ADHD related hyperactivity. Additionally, thigmotaxis measurements suggest Grm8a, Grm8b, and Gad1b as interesting candidates for prospective studies on comorbid anxiety in ADHD. Furthermore, expression analysis in foxp2 mutants demonstrates Foxp2 as regulator of ADHD associated gene sets and neurodevelopmental disorder (NDD) overarching genetic and functional networks with possible implications for ADHD polygenicity and comorbidity. Finally, with the characterization of gene expression patterns and the generation and validation of genetic zebrafish models for Grm8a, Grm8b, Foxp2, and Gad1b, the present thesis laid the groundwork for future research efforts, for instance, the identification of the functional circuit(s) and biological mechanism(s) by which Grm8a, Grm8b, Foxp2, and Gad1b loss of function interfere with GABAergic signaling and ultimately induce hyperactivity.}, language = {en} } @phdthesis{Kiser2019, author = {Kiser, Dominik Pascal}, title = {Gene x Environment Interactions in Cdh13-deficient Mice: CDH13 as a Factor for Adaptation to the Environment}, doi = {10.25972/OPUS-17959}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-179591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Neurodevelopmental disorders, including attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are disorders of mostly unknown etiopathogenesis, for which both genetic and environmental influences are expected to contribute to the phenotype observed in patients. Changes at all levels of brain function, from network connectivity between brain areas, over neuronal survival, synaptic connectivity and axonal growth, down to molecular changes and epigenetic modifications are suspected to play a key roles in these diseases, resulting in life-long behavioural changes. Genome-wide association as well as copy-number variation studies have linked cadherin-13 (CDH13) as a novel genetic risk factor to neuropsychiatric and neurodevelopmental disorders. CDH13 is highly expressed during embryonic brain development, as well as in the adult brain, where it is present in regions including the hippocampus, striatum and thalamus (among others) and is upregulated in response to chronic stress exposure. It is however unclear how CDH13 interacts with environmentally relevant cues, including stressful triggers, in the formation of long-lasting behavioural and molecular changes. It is currently unknown how the environment influences CDH13 and which long term changes in behaviour and gene expression are caused by their interaction. This work therefore investigates the interaction between CDH13 deficiency and neonatal maternal separation (MS) in mice with the aim to elucidate the function of CDH13 and its role in the response to early-life stress (ELS). For this purpose, mixed litters of wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous knockout (Cdh13-/-) mice were maternally separated from postnatal day 1 (PN1) to postnatal day 14 (PN14) for 3 hours each day (180MS; PN1-PN14). In a first series of experiments, these mice were subjected to a battery of behavioural tests starting at 8 weeks of age in order to assess motor activity, memory functions as well as measures of anxiety. Subsequently, expression of RNA in various brain regions was measured using quantitativ real-time polymerase chain reaction (qRT-PCR). A second cohort of mice was exposed to the same MS procedure, but was not behaviourally tested, to assess molecular changes in hippocampus using RNA sequencing. Behavioural analysis revealed that MS had an overall anxiolytic-like effect, with mice after MS spending more time in the open arms of the elevated-plus-maze (EPM) and the light compartment in the light-dark box (LDB). As a notable exception, Cdh13-/- mice did not show an increase of time spent in the light compartment after MS compared to Cdh13+/+ and Cdh13+/- MS mice. During the Barnes-maze learning task, mice of most groups showed a similar ability in learning the location of the escape hole, both in terms of primary latency and primary errors. Cdh13-/- control (CTRL) mice however committed more primary errors than Cdh13-/- MS mice. In the contextual fear conditioning (cFC) test, Cdh13-/- mice showed more freezing responses during the extinction recall, indicating a reduced extinction of fear memory. In the step-down test, an impulsivity task, Cdh13-/- mice had a tendency to wait longer before stepping down from the platform, indicative of more hesitant behaviour. In the same animals, qRT-PCR of several brain areas revealed changes in the GABAergic and glutamatergic systems, while also highlighting changes in the gatekeeper enzyme Glykogensynthase-Kinase 3 (Gsk3a), both in relation to Cdh13 deficiency and MS. Results from the RNA sequencing study and subsequent gene-set enrichment analysis revealed changes in adhesion and developmental genes due to Cdh13 deficiency, while also highlighting a strong link between CDH13 and endoplasmatic reticulum function. In addition, some results suggest that MS increased pro-survival pathways, while a gene x environment analysis showed alterations in apoptotic pathways and migration, as well as immune factors and membrane metabolism. An analysis of the overlap between gene and environment, as well as their interaction, highlighted an effect on cell adhesion factors, underscoring their importance for adaptation to the environment. Overall, the stress model resulted in increased stress resilience in Cdh13+/+ and Cdh13+/- mice, a change absent in Cdh13-/- mice, suggesting a role of CDH13 during programming and adaptation to early-life experiences, that can results in long-lasting consequences on brain functions and associated behaviours. These changes were also visible in the RNA sequencing, where key pathways for cell-cell adhesion, neuronal survival and cell-stress adaptation were altered. In conclusion, these findings further highlight the role of CDH13 during brain development, while also shedding light on its function in the adaptation and response during (early life) environmental challenges.}, subject = {Cadherine}, language = {en} } @phdthesis{Geissler2013, author = {Geissler, Julia Maria}, title = {Neuropsychological Endophenotypes of Attention-Deficit/Hyperactivity Disorder}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79221}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Attention-Deficit/Hyperactivity Disorder (ADHD) endophenotypes as a link between phenotype and genotype were the focus of the present work. Candidate endophenotypes were investigated via neuropsychological tasks during the simultaneous recording of a 21-channel electroencephalogram. Since endophenotypes are assumed to more closely reflect genetic variation, the influence of ADHD-associated genes Catechol-O-methyl transferase (COMT), the dopamine transporter (DAT, SLC6A3) and Latrophilin-3 (LPHN3) was analysed. Response inhibition was assessed with a cued Continuous Performance Test, for working memory we used an n-back task, sensory gating was measured via the paired clicks paradigm and response time variability (RTV) was quantified by the standard deviation of reaction times. The sample comprised medicated (N=36) and unmedicated (N=42) ADHD patients and matched control children and adolescents (N=41). The electrophysiological correlate of response inhibition was the centroid location during response execution and inhibition, and the degree of anteriorization (NGA). Sensory gating reflects the attenuation of the P50 response to the second of two auditory stimuli presented in short succession. Working memory was examined during target and non-target trials, reflecting specific information processing stages: early sensory processing (P100 and N100), selection of material (P150), memory retrieval (N300), event categorization (P300) and updating of working memory content (P450). Performance was quantified in terms of omission errors reflecting inattention and false alarms reflecting impulsivity, as well as speed and variability of reactions. Unmedicated ADHD patients had more omission errors and more variable reaction times, pointing to difficulties with attention and state regulation. NGA did not prove an optimal endophenotype candidate, since it was not yet developed in approximately half of the examined children and adolescents. It was independent of diagnosis; however ADHD risk alleles for DAT conferred lower NGA as well as more variable reaction times across groups. DAT genotype interacted with diagnosis on the level of centroid location, however, it did not manifest in performance deficits. In the case of sensory gating, homozygosity for the DAT allele associated with ADHD (10R) conferred impairment. ADHD was only relevant in participants without genetic risk, where patients without medication struggled most with suppression. In the working memory task, DAT modulated the timing of material selection in interaction with cognitive load and diagnosis: under high load unmedicated patients showed delayed responses, while under low load risk carriers on medication had faster responses than controls. Early processing and event-categorization were stronger in unmedicated ADHD with risk genotype, but dampened without risk. An interesting trend emerged for LPHN3, where carrying all risk variants was associated with higher NGA in ADHD patients irrespective of medication. This warrants further study, as the haplotype also exerts a positive influence on sensory gating specifically in patients. At the same time within the genetic risk group, unmedicated patients had the weakest NGA. However, the LPHN3 risk haplotype effected more posterior Go centroids, putatively facilitating response execution, which is supported by a higher number of false alarms. When inhibition was required, the risk variants led to more posterior centroids in unmedicated compared to medicated patients as well as controls, speaking to differences in inhibition-related brain activation. While as expected the risk haplotype led to compromised gating in unmedicated ADHD, this was reversed in healthy controls where the haplotype was acting in a protective manner with enhanced filtering. During working memory operations, the risk haplotype showed stronger N300 responses suggesting investment of more resources. While COMT did not exert an influence on NGA directly, carriers of the risk allele (met) had more posterior centroids both during response execution and inhibition, and displayed more variable responses in addition to being more prone to false alarms. Unmedicated patients produced smaller P300 during successful execution of responses than controls in absence of the risk allele, while with risk they had shorter latencies and presumably tend towards premature reactions. Additionally, it brought out impairments in sensory gating, thus making unmedicated patients less able to filter out irrelevant information, while they were able to compensate with the protective genotype. The influence of COMT on sensory gating seems to be specific for ADHD, as this gene was of no consequence in healthy controls. In the working memory task, met was beneficial for updating as reflected by P450 amplitude. In ADHD irrespective of medication COMT did not change P450 strength, but for controls this effect was observed.}, subject = {Aufmerksamkeits-Defizit-Syndrom}, language = {en} } @phdthesis{Friedrich2019, author = {Friedrich, Maximilian Uwe}, title = {Funktionelle Charakterisierung einer Tripletdeletion in SLC5A4 (SGLT3) als Kandidatengen f{\"u}r das Aufmerksamkeitsdefizit-/ Hyperaktivit{\"a}tssyndrom (ADHS)}, doi = {10.25972/OPUS-18479}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184791}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Natrium-Glukose Transporter (SGLT) geh{\"o}ren zur „solute carrier 5" (SLC5) Familie, die sich durch einen sekund{\"a}r aktiven, natriumabh{\"a}ngigen Transport von Zuckern und an-deren Molek{\"u}len nach intrazellul{\"a}r auszeichnen. Die durch das Gen SLC5A4 kodierte Isoform SGLT3 transportiert dagegen keinen Zucker, sondern verh{\"a}lt sich als Glukosesensor, der nach Bindung seiner Liganden eine Membrandepolarisation induziert. In genomweiten Exomsequenzierungsstudien (whole exome sequencing, WES) mehrerer erweiterter Stammb{\"a}ume mit hoher Pr{\"a}valenz des Aufmerksamkeitsdefizit-/Hyperaktivit{\"a}tssyndroms (ADHS) wurde im Vorfeld eine ATG-Tripletdeletion in SLC5A4 identifiziert, die zum Verlust einer Aminos{\"a}ure (ΔM500) in SGLT3 f{\"u}hrt und zumindest partiell mit dem klinischen Ph{\"a}notyp kosegregiert. In der vorliegenden Arbeit wurde die zentralnerv{\"o}se Expression von SGLT3 auf RNA- Ebene mittels Reverse-Transkriptase PCR sowie real-time PCR aus humanen Gesamt-RNAs nachgewiesen. Dabei konnte eine ubiquit{\"a}re Expression im Gehirn mit relativ erh{\"o}hter Expression unter anderem in Striatum und Hypothalamus, deren Dysfunktion in der Pathogenese des ADHS impliziert wurde, gezeigt werden. Da Mutationen in homologen Dom{\"a}nen der eng strukturverwandten Isoformen SGLT1 und SGLT2 sowohl intestinale als auch renale Funktionen schwer beeintr{\"a}chtigen, wurden in dieser Arbeit funktionelle Charakteristika sowohl des wildtypischen als auch der ΔM500 und der benachbarten ΔI501 Deletionsvariante von SGLT3 mittels Zwei-Elektroden Spannungs- und Stromklemme in entsprechend cRNA-injizierten Xenopus laevis Oozyten untersucht. Der hochpotente SGLT3-spezifische Iminozuckeragonist 1-Desoxynojirimycin (DNJ) induzierte an SGLT3-exprimierenden Oozyten in sauren Bedingungen etwa dreifach gr{\"o}ßere Kationeneinstr{\"o}me als D-Glukose, was sowohl im Spannungsklemmen-, und anhand einer entsprechenden Membrandepolarisation im Stromklemmenmodus gezeigt wurde. Die mit der ΔM500 bzw. ΔI501 Variante injizierten Oozyten dagegen zeigten in den maximalen Aktivierungsbedingungen um 92\% bzw. 96\% (p<0,01) reduzierte Kationeneinstr{\"o}me, sodass diese als hochgradig sch{\"a}dliche „Loss of Function" Mutationen in SGLT3 charakterisiert wurden. Dieser Befund wurde mittels bioinformatischer in-silico Effektvorhersage validiert. Um Konsequenzen der Sequenzalteration auf den Membraneinbau der Transporter zu untersuchen, wurden die mit einem gelb fluoreszierenden Farbstoff (YFP) markierten Transporter in Oozytenmembranen mittels Laser-Scanning Mikroskop nachgewiesen und die jeweiligen Mengen der Konstrukte anhand der Fluoreszenzintensit{\"a}ten quantifiziert. Dabei zeigte sich eine um 53\% bzw. 42\% (p<0,01) reduzierte Menge der mutierten Konstrukte ΔM500 bzw. ΔI501 in der Membran, was zus{\"a}tzliche sch{\"a}dliche Effekte der Mutationen auf das sogenannte Membrantargeting der Transporter belegt. Zusammenfassend demonstrieren die Ergebnisse dieser Arbeit, dass die ΔM500 Variante von SGLT3, welcher in ADHS-relevanten Hirnarealen exprimiert wird, dessen sub-stratinduzierte Natriumleitf{\"a}higkeit aufhebt und den Membraneinbau beeintr{\"a}chtigen k{\"o}nnte, was in Wechselwirkung mit anderen genetischen ADHS Risikovarianten das Risiko f{\"u}r ADHS in Mutationstr{\"a}gern beeinflussen kann.}, subject = {ADHS}, language = {de} }