@article{SubramaniyanSridharanHowardetal.2020, author = {Subramaniyan, Boopathi and Sridharan, Sangita and Howard, Cory M. and Tilley, Augustus M.C. and Basuroy, Tupa and Serna, Ivana de la and Butt, Elke and Raman, Dayanidhi}, title = {Role of the CXCR4-LASP1 axis in the stabilization of Snail1 in triple-negative breast cancer}, series = {Cancers}, volume = {12}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers12092372}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-211217}, year = {2020}, abstract = {The CXCL12-CXCR4 axis plays a vital role in many steps of breast cancer metastasis, but the molecular mechanisms have not been fully elucidated. We previously reported that activation of CXCR4 by CXCL12 promotes the nuclear localization of LASP1 (LIM and SH3 protein 1). The nuclear LASP1 then interacts with Snail1 in triple-negative breast cancer (TNBC) cell lines. In this study, we report that the nuclear accumulation and retention of Snail1 was dependent on an increase in nuclear LASP1 levels driven by active CXCR4. The CXCR4-LASP1 axis may directly regulate the stabilization of nuclear Snail1, by upregulating nuclear levels of pS473-Akt, pS9-GSK-3β, A20, and LSD1. Furthermore, the activation of CXCR4 induced association of LASP1 with Snail1, A20, GSK-3β, and LSD1 endogenously. Thus, nuclear LASP1 may also regulate protein-protein interactions that facilitate the stability of Snail1. Genetic ablation of LASP1 resulted in the mislocalization of nuclear Snail1, loss of the ability of TNBC cells to invade Matrigel and a dysregulated expression of both epithelial and mesenchymal markers, including an increased expression of ALDH1A1, a marker for epithelial breast cancer stem-like cells. Our findings reveal a novel role for the CXCR4-LASP1 axis in facilitating the stability of nuclear localized Snail1.}, language = {en} } @article{SchmidtLiuLiuetal.2014, author = {Schmidt, Sebastian and Liu, Guoxing and Liu, Guilai and Yang, Wenting and Honisch, Sabina and Pantelakos, Stavros and Stournaras, Christos and H{\"o}nig, Arnd and Lang, Florian}, title = {Enhanced Orai1 and STIM1 expression as well as store operated \(Ca^{2+}\) entry in therapy resistant ovary carcinoma cells}, series = {Oncotarget}, volume = {5}, journal = {Oncotarget}, number = {13}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-121423}, pages = {4799-810}, year = {2014}, abstract = {Mechanisms underlying therapy resistance of tumor cells include protein kinase Akt. Putative Akt targets include store-operated \(Ca^{2+}\)-entry (SOCE) accomplished by pore forming ion channel unit Orai1 and its regulator STIM1. We explored whether therapy resistant (A2780cis) differ from therapy sensitive (A2780) ovary carcinoma cells in Akt, Orai1, and STIM1 expression, \(Ca^{2+}\)-signaling and cell survival following cisplatin (100µM) treatment. Transcript levels were quantified with RT-PCR, protein abundance with Western blotting, cytosolic \(Ca^{2+}\)-activity ([\(Ca^{2+}\)]i) with Fura-2-fluorescence, SOCE from increase of [\(Ca^{2+}\)]i following \(Ca^{2+}\)-readdition after Ca2+-store depletion, and apoptosis utilizing flow cytometry. Transcript levels of Orai1 and STIM1, protein expression of Orai1, STIM1, and phosphorylated Akt, as well as SOCE were significantly higher in A2780cis than A2780 cells. SOCE was decreased by Akt inhibitor III (SH-6, 10µM) in A2780cis but not A2780 cells and decreased in both cell lines by Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-ABP, 50µM). Phosphatidylserine exposure and late apoptosis following cisplatin treatment were significantly lower in A2780cis than A2780 cells, a difference virtually abolished by SH-6 or 2-ABP. In conclusion, Orai1/STIM1 expression and function are increased in therapy resistant ovary carcinoma cells, a property at least in part due to enhanced Akt activity and contributing to therapy resistance in those cells.}, language = {en} } @article{RajendranBoettigerStadelmannetal.2021, author = {Rajendran, Ranjithkumar and B{\"o}ttiger, Gregor and Stadelmann, Christine and Karnati, Srikanth and Berghoff, Martin}, title = {FGF/FGFR pathways in multiple sclerosis and in its disease models}, series = {Cells}, volume = {10}, journal = {Cells}, number = {4}, issn = {2073-4409}, doi = {10.3390/cells10040884}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236594}, year = {2021}, abstract = {Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)\(_{35-55}\)-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS.}, language = {en} } @phdthesis{Niederlechner2013, author = {Niederlechner, Stefanie}, title = {Assessment of the basic molecular mechanisms underlying L-glutamine's cytoprotective effects after intestinal injury}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-77399}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Critical illness like sepsis, shock, and intestinal bowel disease are one of the leading causes of morbidity and mortality in the US and around the world. At present, studies to define new therapeutic interventions that can protect tissues and cells against injury and attenuate inflammation are fields of intense investigation. While research over the past decade has clearly identified GLN as a vital stress substrate facilitating cellular survival following injury, the initiation steps in GLN's cytoprotective molecular mechanism still remain elusive. Previously published work suggested that stabilization of ECM proteins and activation of ECM receptor osmosignaling may play a central role in the orchestration of many cellular pathways following stress. Thus, I hypothesized that preservation of ECM protein and EGFR levels as well as ECM receptor signaling play key roles in the molecular mechanisms underlying GLN's protection against thermal injury in the intestine. I was able to confirm via Western blotting and by using silencing RNA against FN, Ntn-1, EGFR, and their negative controls, that GLN-mediated preservation of FN, Ntn-1, and EGFR levels is critical in GLN's protection against hyperthermia in IEC-6 cells. By using a selective FN-Integrin interaction inhibitor GRGDSP, its negative control peptide GRGESP, and Src-kinase inhibitor PP2, I showed that FN-Integrin signaling and Src-kinase activation are essential in GLN-mediated protection in the intestine. This applied to EGFR signaling as demonstrated using the EGFR tyrosine kinase inhibitor AG1478. In addition to GRGDSP and AG1478, ERK1/2 inhibitors PD98059 and UO126 as well as the p38MAPK inhibitor SB203580 revealed that GLN is protective by activating ERK1/2 and dephosphorylating p38MAPK via FN-Integrin and EGFR signaling. However, GLN-mediated PI3-K/Akt/Hsp70 activation seems to occur independently of FN-Integrin and EGFR signaling as indicated by Western blots as well as experiments using the PI3-K inhibitor LY294002, GRGDSP, and AG1478. The results showed that GLN activates cell survival signaling pathways via integrins as well as EGFRs after hyperthermia. Moreover, I found that GLN-mediated preservation of FN expression after HS is regulated via PI3-K signaling. Whether GLN-mediated PI3-K signaling happens simultaneously to FN-Integrin and EGFR signaling or whether PI3-K signaling coordinates FN-Integrin and EGFR signaling needs to be investigated in future studies. Further, experiments with PD98059 and GRGDSP revealed that ERK1/2 assists in mediating transactivation of HSF-1 following HS. This leads to increases in Hsp70 expression via FN-Integrin signaling, which is known to attenuate apoptosis after thermal injury. Fluorescence microscopy results indicated that HS and GLN regulate cell are size changes and the morphology of F-actin via FN-Integrin signaling. Experiments using GRGDSP and GRGESP showed that GLN enhances cellular survival via FN-Integrin signaling in a manner that does not require increased intracellular GLN concentrations (as quantified using LC-MS/MS). In summary, my thesis work gives new and potentially clinically relevant mechanistic insights into GLN-mediated molecular cell survival pathways. These results warrant clinical translation to assess if clinical outcome of critically ill patients suffering from gastrointestinal diseases can be improved by GLN treatment and/or by targeting the molecular pathways found in my studies.}, subject = {Glutamin}, language = {en} } @phdthesis{Messerschmidt2022, author = {Messerschmidt, Konstantin Felix}, title = {Einfluss der PSMA-Expression auf die Docetaxel-Sensitivit{\"a}t sowie systemischer Medikamente auf die Expression von PSMA, CXCR4 und SSTR2}, doi = {10.25972/OPUS-28336}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-283364}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {F{\"u}r das klinische Management des Prostatakarzinoms werden nuklearmedizinische Verfahren zunehmend relevant. Bildgebung und Therapie, welche gegen das Prostataspezifische Membranantigen (PSMA) gerichtet sind, werden bereits im klinischen Alltag angewendet. Weitere potenzielle Biomarker des Prostatakarzinoms, wie beispielsweise der CXC-Motiv-Chemokinrezeptor 4 (CXCR4) und der Somatostatinrezeptor Typ 2 (SSTR2), werden zudem als nuklearmedizinische Zielstrukturen diskutiert. Vorangegangene Arbeiten legten einen Zusammenhang zwischen dem Ausmaß der PSMA-Expression und der Sensitivit{\"a}t gegen{\"u}ber Docetaxel in Prostatakarzinomzellen nahe. Ein Ziel der vorliegenden Arbeit war, diesen Mechanismus genauer zu untersuchen. Dabei wurden die Aktivit{\"a}t onkogener Signalwege, die Proliferation und die CXCR4- sowie die Androgenrezeptor (AR)- Expression in Prostatakarzinomzelllinien mit unterschiedlicher PSMA-Expression durchflusszytometrisch quantifiziert. Im zweiten Projektteil sollte der Einfluss von Metformin und verschiedener, bereits in der Prostatakarzinomtherapie angewandter Medikamente (Docetaxel, Dexamethason, Abirateron und Enzalutamid), auf die Expression von PSMA, CXCR4 und SSTR2 untersucht werden. Die Quantifizierung der Expression erfolgte mittels Durchflusszytometrie. Ein kausaler Mechanismus f{\"u}r den Zusammenhang zwischen PSMA-Expression und Docetaxel-Sensitivit{\"a}t konnte in dieser Arbeit schließlich nicht hergestellt werden. Es zeigten sich jedoch vor allem Expressionsmodulationen von PSMA und CXCR4. Mittels Docetaxel konnte z.B. bei C4-2 Zellen eine Verdopplung der PSMA-Expression und eine Verdreifachung der CXCR4-Expression erreicht werden. Dar{\"u}ber hinaus zeigte die Behandlung mit Abirateron eine deutliche Heraufregulation der PSMA- Expression bei LNCaP und C4-2 Zellen, sowie eine Zunahme der CXCR4- Expression bei allen untersuchten Zelllinien. Sollte sich der Einfluss der medikament{\"o}sen Behandlung auf die Expression von PSMA und CXCR4 best{\"a}tigen, kann dies zuk{\"u}nftig zur verbesserten und individualisierten Diagnostik und Therapie von Prostatakarzinompatienten beitragen.}, subject = {Prostatakrebs}, language = {de} } @article{KugerCoerekPolatetal.2014, author = {Kuger, Sebastian and C{\"o}rek, Emre and Polat, B{\"u}lent and K{\"a}mmerer, Ulrike and Flentje, Michael and Djuzenova, Cholpon S.}, title = {Novel PI3K and mTOR Inhibitor NVP-BEZ235 Radiosensitizes Breast Cancer Cell Lines under Normoxic and Hypoxic Conditions}, doi = {10.4137/BCBCR.S13693}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-112708}, year = {2014}, abstract = {In the present study, we assessed, if the novel dual phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) inhibitor NVP-BEZ235 radiosensitizes triple negative (TN) MDA-MB-231 and estrogen receptor (ER) positive MCF-7 cells to ionizing radiation under various oxygen conditions, simulating different microenvironments as occurring in the majority of breast cancers (BCs). Irradiation (IR) of BC cells cultivated in hypoxic conditions revealed increased radioresistance compared to normoxic controls. Treatment with NVP-BEZ235 completely circumvented this hypoxia-induced effects and radiosensitized normoxic, reoxygenated, and hypoxic cells to similar extents. Furthermore, NVP-BEZ235 treatment suppressed HIF-1α expression and PI3K/mTOR signaling, induced autophagy, and caused protracted DNA damage repair in both cell lines in all tested oxygen conditions. Moreover, after incubation with NVP-BEZ235, MCF-7 cells revealed depletion of phospho-AKT and considerable signs of apoptosis, which were signifi-cantly enhanced by radiation. Our findings clearly demonstrate that NVP-BEZ235 has a clinical relevant potential as a radiosensitizer in BC treatment.}, language = {en} } @article{HausmannBrandtKoecheletal.2015, author = {Hausmann, Stefan and Brandt, Evelyn and K{\"o}chel, Carolin and Einsele, Hermann and Bargou, Ralf C. and Seggewiss-Bernhardt, Ruth and St{\"u}hmer, Thorsten}, title = {Loss of serum and glucocorticoid-regulated kinase 3 (SGK3) does not affect proliferation and survival of multiple myeloma cell lines}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0122689}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148708}, pages = {e0122689}, year = {2015}, abstract = {Multiple myeloma (MM) is a generally fatal plasma cell cancer that often shows activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Targeted pharmacologic therapies, however, have not yet progressed beyond the clinical trial stage, and given the complexity of the PI3K/Akt signalling system (e.g. multiple protein isoforms, diverse feedback regulation mechanisms, strong variability between patients) it is mandatory to characterise its ramifications in order to better guide informed decisions about the best therapeutic approaches. Here we explore whether serum and glucocorticoid-regulated kinase 3 (SGK3), a potential downstream effector of PI3K, plays a role in oncogenic signalling in MM cells-either in concert with or independent of Akt. SGK3 was expressed in all MM cell lines and in all primary MM samples tested. Four MM cell lines representing a broad range of intrinsic Akt activation (very strong: MM. 1s, moderate: L 363 and JJN-3, absent: AMO-1) were chosen to test the effects of transient SGK3 knockdown alone and in combination with pharmacological inhibition of Akt, PI3K-p110\(\alpha\), or in the context of serum starvation. Although the electroporation protocol led to strong SGK3 depletion for at least 5 days its absence had no substantial effect on the activation status of potential downstream substrates, or on the survival, viability or proliferation of MM cells in all experimental contexts tested. We conclude that it is unlikely that SGK3 plays a significant role for oncogenic signalling in multiple myeloma.}, language = {en} } @phdthesis{Dirimanov2019, author = {Dirimanov, Stoyan Dinkov}, title = {Molecular Effects of Polyphenols in Experimental Type 2 Diabetes Mellitus and Metabolic Syndrome}, doi = {10.25972/OPUS-18570}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-185701}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {The growing prevalence of type 2 diabetes mellitus (T2DM) demands novel therapeutic and adjuvant strategies. Polyphenols (PPs) are plant secondary metabolites. Epidemiological studies demonstrate an inverse relationship between their increased intake and the risk of development of T2DM and cardiovascular complications. However, the PPs' mechanism of action remains largely unknown. The present work aimed to expand knowledge regarding the effects of PPs on diabetes relevant molecular targets. Pycnogenol® (PYC) is a standardized pine bark extract which consists of oligomeric and monomeric PPs. Its anti-diabetic effects have been demonstrated in clinical trials. As a part of a human study involving 20 healthy volunteers, the extract's effects on dipeptidyl peptidase IV (DPP IV) were investigated. This protease terminates the insulin secretagogue action of incretins. Its inhibition is a promising strategy in T2DM treatment. This study uncovered that PYC-intake of 100 mg daily over 14 days statistically significantly reduced DPP IV serum concentrations by 8.2 \% (n= 38, p= 0.032). Contrary to expectations, this decrease was not paralleled by a reduction in the serum DPP IV enzymatic activity. To the best of our knowledge, the present study was the first investigating the effects of PPs on DPP IV serum concentrations and activities in humans. The finding that PYC is capable of reducing DPP IV serum concentrations might be important with regard to diabetes, where DPP IV levels are increased. Screenings for PPs' in vitro effects on DPP IV activity were performed employing a purified enzyme. The effects of tested PPs (among which PYC ingredients) at a physiologically relevant concentration of 5 µM were weak (< 10 \%) and too small compared to the reference compound sitagliptin, and thus not likely to be clinically relevant. This result is in discordance with some published data, but consistent with the outcome from the present human study. In addition, fluorescence interactions with the experimental setup were registered: under certain conditions urolithin B exhibited an autofluorescence which might mask eventual inhibitory activity. Quercetin quenched the fluorescence slightly which might contribute to false positive results. No statistically significant effects of selected constituents and metabolites of PYC on the total DPP IV protein expression were observed in 3T3-L1 adipocytes. Thus, the lower DPP IV in vivo concentrations after intake of PYC cannot be explained with down-regulation of the DPP IV expression in adipocytes. Akt kinase is responsible for the transmission of insulin signals and its dysregulation is related to insulin resistance and plays an important role in development of cardiovascular complications in T2DM. Thus, the modulation of the phosphorylation status of endothelial Akt-kinase, respectively its activity, might be a promising strategy in the management of these pathologies. This work aimed to uncover the effects of PPs from different structural subclasses on Akt-phosphorylation (pAkt) in endothelial cells (Ea.hy926). Short-term effects (5 - 30 min) were investigated at a concentration of 10 µM. In a pilot study two model PPs induced a moderate, but reproducible inhibition of pAkt Ser473 of 52.37 ± 21.01 \% (quercetin; p= 0.006, n= 3) and 37.79 ± 7.14 \% (resveratrol; p= 0.021, n= 4) compared to the negative control. A primary screening with Western blot analysis investigated the effects of eight compounds from different subclasses on pAkt Ser473 and Thr308 to reveal whether the observed inhibition PPs a group effect or specific to certain compounds. In addition to resveratrol and quercetin, statistically significant inhibitions of pAkt Ser473 were induced by luteolin (29.96 ± 11.06 \%, p< 0.01, n= 6) and apigenin (22.57 ± 10.30 \%, p< 0.01, n= 6). In contrast, genistein, 3,4,5-trimethoxystilbene, taxifolin and (+)-catechin caused no inhibition. A strong positive and statistically significant correlation between the mean inhibitory effects of the tested PPs on both Akt-residues Ser473 and Thr308 (r= 0.9478, p= 0.0003) was determined. A comprehensive secondary screening via ELISA involving 44 compounds from nine structural groups quantified the effects of PPs on pAkt Ser473 to uncover potential structure-activity features. The most potent inhibitors were luteolin (44.31 ± 17.95 \%), quercetin (35.71 ± 8.33 \%), urolithin A (35.28 ± 11.80 \%), apigenin (31.79 ± 6.16 \%), fisetin (28.09 ± 9.09 \%), and resveratrol (26.04 ± 5.58 \%). These effects were statistically significant (p< 0.01, n= 3 to 6). Further lead structure optimization might be based on the fact that the effects of luteolin and resveratrol also differed statistically significantly from each other (p= 0.008). To the best of our knowledge, the present study is the first to compare quantitatively the short term effects of PPs from different subclasses on pAkt in endothelial cells. Basic structure-activity relationships revealed that for flavones and flavonols the presence of a C2=C3 double bond (ring C) was essential for inhibitory activity and hydroxylation on the m- and p- positions in the ring B contributed to it. For stilbenoids, three free OH-groups appeared to be optimal. The comparison of the inhibitory potentials of ellagic acid and its microbial metabolites showed that urolithin A was statistically significantly more effective than its progenitor compound. Despite their structural similarities, the only active compound among all urolithins tested was urolithin A, hydroxylated at the C3 and C8 positions. This suggested a specific effect for urolithin A. Based on the common structural determinants and molecular geometry of the most active PPs a pharmacophore model regarding Akt-inhibition was proposed. In summary, the effects of a wide variety of PPs from diverse structural subclasses on the in vitro phosphorylation of endothelial Akt were quantitatively analyzed for the first time, the effects of previously undescribed compounds were determined and structure activity relationships were elucidated. The inhibitory potential of individual PPs might be beneficial in cases of sustained over-activation of Akt-kinase and its substrates such as S6 kinase as reported for certain T2DM-related pathological states, such as insulin resistance, endothelial dysfunction, excessive angiogenesis, vascular calcification, and insulin triggered DNA-damage. The results of the present work suggest potential molecular mechanisms of action of PP involving Akt-inhibition and DPP IV-down-regulation and thus contribute to the understanding of anti-diabetic effects of these compounds on the molecular level.}, subject = {Polyphenole}, language = {en} }