@phdthesis{WaagHiersch2017, author = {Waag-Hiersch, Luisa}, title = {„iClick"-Reaktionen von Ru- und Rh-Azid-Komplexen mit elektronenarmen Alkinen: Regioselektivit{\"a}t, Stabilit{\"a}t und Kinetik}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146286}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Die regioselektive Funktionalisierung von Bio(makro)molek{\"u}len erfordert Reaktionen, die mit einem biologischen System weder interagieren noch interferieren. Bestimmte funktionelle Gruppen, wie Azide oder Alkine, sind unter physiologischen Bedingungen inert, kommen nicht in der Natur vor, lassen sich selektiv miteinander verkn{\"u}pfen und sind nicht-toxisch gegen{\"u}ber Zellen und Organismen. F{\"u}r die Einf{\"u}hrung metallbasierter Funktionalit{\"a}ten in solche Zielstrukturen stellen Click-Reaktionen daher einen schnellen Zugang dar, wobei Reaktionen, die ohne Zusatz von Katalysator und bei Raumtemperatur ablaufen von besonderem Interesse sind. Das Ziel der vorliegenden Arbeit war es daher die „iClick"-Reaktion von Ruthenium-Azid-Komplexen der allgemeinen Formel [Ru(N3)(aren)(N-N)]+ mit bidentaten Stickstoffliganden sowie Rhodium-Azid-Komplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ mit unterschiedlich substituierten 2,2'-Bipyridin-Coliganden (R = OCH3, H, COOCH3) gegen{\"u}ber elektronenarmen Alkinen zu untersuchen. R{\"o}ntgenstrukturanalysen der resultierenden Triazolat-Komplexe sollten den Koordinationsmodus best{\"a}tigten, da die Produkte der Click-Reaktionen prinzipiell als zwei verschiedene Regioisomere auftreten k{\"o}nnen. Die [Rh(Cp*)(N3)(bpyR,R)]CF3SO3-Komplexe mit 2,2'-Bipyridin (bpy), dem elektronenziehenden Ligand 4,4'-Bis(methoxycarbonyl)-2,2′-bipyridin (bpyCOOCH3,COOCH3) sowie dem elektronenschiebenden Ligand 4,4'-Dimethoxy-2,2'-bipyridin (bpyOCH3,OCH3) wurden aus den entsprechenden Rhodium-Chlorido-Komplexen durch F{\"a}llung des Halogenids mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid hergestellt. In L{\"o}sung waren diese Verbindungen jedoch nur begrenzt stabil, wobei der Komplex mit bpyOCH3,OCH3 am wenigsten empfindlich war, w{\"a}hrend [Rh(Cp*)(N3)(bpyCOOCH3,COOCH3)]CF3SO3 aufgrund der sehr schnellen Zersetzung nicht isoliert werden konnte. Die „iClick"-Reaktion der Rhodium-Azid-Komplexe mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester ergab dann aber die stabilen Triazolat-Komplexe [Rh(Cp*)(triazolatCF3,COOEt)(bpyR,R)]CF3SO3 in sehr guter Ausbeute. Die Ruthenium-Azid-Komplexe [Ru(N3)(N-N)(p­cym)]PF6 mit N-N = bpy, bpyCOOCH3,COOCH3, bpyOCH3,OCH3, Bipyrimidin (bpym) sowie Dipyrido[3,2­a:2',3'­c]phenazin (dppz) wurden ausgehend von den jeweiligen Ruthenium-Chlorido-Komplexen durch F{\"a}llung des Halogenid-Liganden mit Silbertrifluormethansulfonat und anschließender Umsetzung mit Natriumazid in guter bis moderater Ausbeute hergestellt. Um den Einfluss des Aren-Liganden zu untersuchen wurde außerdem der entsprechende Hexamethylbenzol-Komplex [Ru(N3)(bpy)(hmb)]CF3SO3 in moderater Ausbeute hergestellt. Alle [Ru(N3)(aren)(N-N)]X-Komplexe mit X = PF6- oder CF3SO3- wurden mittels 1H, 13C NMR- und IR-Spektroskopie, CHN-Analyse sowie ESI-Massenspektrometrie charakterisiert. Die „iClick"-Reaktion dieser Komplexe erfolgte mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester und teilweise auch mit Dimethylacetylendicaboxylat (DMAD) in sehr guter bis guter Ausbeute. Außerdem konnten f{\"u}r die R{\"o}ntgenstrukturanalyse taugliche Einkristalle von [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 und [Ru(triazolatCF3,COOEt)(bpyCOOCH3,COOCH3)(p­cym)]PF6 erhalten werden, die die N2-Koordination des Triazolat-Liganden an das Zentralatom best{\"a}tigten. Um diese als metallbasierte Marker einsetzen zu k{\"o}nnen, m{\"u}ssen die resultierenden Triazolat-Komplexe bei biologisch relevanten pH-Werten und gegen{\"u}ber Ligandenaustausch, zum Beispiel mit den Aminos{\"a}ureseitenketten von Proteinen, stabil sein. Durch HPLC-Untersuchungen an [Ru(triazolatCF3,COOEt)(bpy)(hmb)]CF3SO3 wurde gezeigt, dass dieser Komplex in w{\"a}ssriger L{\"o}sung {\"u}ber einen pH-Bereich von 1 bis 8 bei Raumtemperatur mindestens 24 h stabil ist. Außerdem konnte eine weitgehende Stabilit{\"a}t gegen{\"u}ber Ligandenaustausch mit den Seitenketten der Aminos{\"a}uren L­Cystein, L-Histidin, L­Methionin und L-Glutamins{\"a}ure bei 37 °C {\"u}ber mindestens 72 h festgestellt werden. Insbesondere die Geschwindigkeit der „iClick"-Reaktion ist in einem biologischen Kontext von Bedeutung, da die Konjugationsreaktionen schneller ablaufen m{\"u}ssen als interessierende biologische Prozesse. Mittels HPLC und IR-Spektroskopie wurde f{\"u}r die „iClick"-Reaktion der Rutheniumazid-Komplexe [Ru(N3)(bpyR,R)(p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 mit einem {\"U}berschuss an 4,4,4-Trifluorobut-2-ins{\"a}ureethylester Geschwindigkeitskonstanten pseudoerster Ordnung im Bereich von 1 ­ 3*10-3 s-1 bestimmt. Außerdem war es mittels IR-Spektroskopie in L{\"o}sung m{\"o}glich die Geschwindigkeits-konstante pseudoerster Ordnung f{\"u}r die „iClick"-Reaktion der Rhodiumazid-Verbindungen [Rh(Cp*)(N3)(bpyR,R)]CF3SO3 mit R = OCH3, H oder COOCH3 und 4,4,4-Trifluorobut-2-ins{\"a}ureethylester zu 2 ­ 4*10-3 s-1 zu ermitteln. Insgesamt zeigte sich, dass Komplexe mit elektronenreichen Coliganden schneller mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester reagieren als solche mit elektronen{\"a}rmeren Liganden. Auch war die Geschwindigkeitskonstante f{\"u}r die Reaktion der Rhodium-Komplexe h{\"o}her als f{\"u}r die Rutheniumverbindungen. Die Geschwindigkeitskonstanten zweiter Ordnung wurden aus der 19F NMR-spektroskopischen Untersuchung der Reaktion von 4,4,4-Trifluorobut-2-ins{\"a}ureethylester und [Ru(N3)(bpyR,R) (p-cym)]PF6 mit R = OCH3, H oder COOCH3 sowie [Ru(N3)(bpy)(hmb)]CF3SO3 bei 20 °C bestimmt. Bei ann{\"a}hernd gleichem Verh{\"a}ltnis von Alkin und Rutheniumazid-Komplexen wurden Geschwindigkeitskonstanten im Bereich von 1 - 2*10-2 L mol-1 s-1 erhalten. Diese sind gr{\"o}ßer als die der Staudinger-Ligation, aber kleiner als die der spannungsinduzierten Azid-Alkin Cycloaddition. Prinzipiell sollte damit also eine biologische Anwendung m{\"o}glich sein. Außerdem wurde die Aktivierungsenergie der Reaktion von [Ru(N3)(bpy)(p­cym)]PF6 mit 4,4,4-Trifluorobut-2-ins{\"a}ureethylester aus der Untersuchung der Temperaturabh{\"a}ngigkeit im Bereich von -20 °C bis +20 °C mit VT-NMR zu 46.1 kJ mol-1 bestimmt. In den 19F NMR-Spektren des Reaktionsgemisches zeigte sich bei -20 °C neben dem Signal des N2-koordinierten Triazolats außerdem ein weiteres, das dem N1-Isomer zuzuordnen ist, welches bei Erw{\"a}rmen jedoch wieder verschwand. In einer DFT-Rechnung wurde die Geometrie von [Ru(N3)(bpy)(hmb)]CF3SO3 optimiert. Dabei zeigte sich, dass nur etwa 25 - 30\% aller Trajektorien angreifender Alkinmolek{\"u}len einen Zugang zum Azid erm{\"o}glichen, sodass die Reaktionsgeschwindigkeit um etwa einen Faktor vier niedriger liegen sollte als f{\"u}r nicht oder nur wenig abgeschirmte Organoazid-Verbindungen. Die „iClick"-Reaktion der hier untersuchten Metall-Azid-Komplexe mit elektronenarmen Alkinen zeigt also bereits jetzt Reaktionsgeschwindigkeiten vergleichbar etablierter Biokonjugationsreaktionen. In Zukunft sollte daher das Potential anderer Metall-Azid-Bausteine untersucht und auch das Alkin variiert werden.}, subject = {Ruthenium}, language = {de} } @phdthesis{Liu2020, author = {Liu, Xiaocui}, title = {Catalytic Triboration and Diboration of Terminal Alkynes}, doi = {10.25972/OPUS-19253}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-192537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Chapter two reports the catalytic triboration of terminal alkynes with B2pin2 using readily available Cu(OAc)2 and PnBu3. Various 1,1,2-triborylalkenes, a class of compounds which have been demonstrated to be potential Matrix Metalloproteinase-2 (MMP-2) inhibitors, are obtained directly in moderate to good yields. The process features mild reaction conditions, broad substrate scope, and good functional group tolerance were observed. This Cu-catalyzed reaction can be conducted on a gram scale to produce the corresponding 1,1,2-triborylalkenes in modest yields. The utility of these products is demonstrated by further transformation of the C-B bonds to prepare gem-dihaloborylalkenes (F, Cl, Br), monohalodiborylalkenes (Cl, Br), and trans-diaryldiborylalkenes, which serve as important synthons and have previously been challenging to prepare. A convenient and efficient one step synthesis of 1,1,1-triborylalkanes was achieved via sequential dehydrogenative borylation and double hydroboration of terminal alkynes with HBpin (HBpin = pinacolborane) catalyzed by inexpensive and readily available Cu(OAc)2. This protocol proceeded under mild conditions, furnishing 1,1,1-tris(boronates) with wide substrate scope, excellent selectivity and good functional group tolerance, and is applicable to gram-scale synthesis without loss of yield. The 1,1,1-triborylalkanes can be used in the preparation of α-vinylboronates and borylated cyclic compounds, which are valuable but previously rare compounds. Different alkyl groups can be introduced stepwise via base-mediated deborylative alkylation to produce racemic tertiary alkyl boronates, which can be readily transformed into useful tertiary alcohols. Chapter 4 reported a NaOtBu-catalyzed mixed 1,1-diboration of terminal alkynes with an unsymmetrical diboron reagent BpinBdan. This Br{\o}nsted base-catalyzed reaction proceeds in a regio- and stereoselective fashion affording 1,1-diborylalkenes with two different boryl moieties in moderate to high yields, and is applicable to gram-scale synthesis without loss of yield or selectivity. Hydrogen bonding between the Bdan group and tBuOH is proposed to be responsible for the observed stereoselectivity. The mixed 1,1-diborylalkenes can be utilized in stereoselective Suzuki-Miyaura cross-coupling reactions.}, subject = {Borylierung}, language = {en} } @phdthesis{Froehling2002, author = {Fr{\"o}hling, Bettina}, title = {Reaktionen elektrophiler und nucleophiler Schwefeldonoren mit cyclischen Alkenen und Alkinen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182609}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In der vorliegenden Arbeit wurden die Reaktionen elektrophiler und nucleophiler Schwefeldonoren mit cyclischen Alkenen und Alkinen untersucht, wobei ungew{\"o}hnliche und neuartige Schwefelchemie aufgedeckt wurde. Als elektrophile Schwefeldonoren wurden ein Sulten und ein Thiophenendoperoxid eingesetzt. Als Schwefelakzeptoren standen die cyclische Alkene, Enolether und Alkine zur Verf{\"u}gung. Das Sulten {\"u}bertr{\"a}gt unter Lewiss{\"a}ure-Katalyse das Schwefelatom auf verschiedene gespannte cyclische Olefine, wobei diastereoselektiv die entsprechenden Episulfide sowie ein Oxetan und/oder ein Aldehyd gebildet werden. Es kamen dabei verschiedene Lewiss{\"a}uren wie z. B. Metallhalogenide (BF3•Et2O, ZnCl2 und SnCl4), Metallkomplexe [Mn(salen*)PF6] und Porphyrine zum Einsatz. Als beste Lewiss{\"a}ure erweist sich das Zinnporphyrin Sn(tpp)(ClO4)2, mit der die Olefine bei Raumtemperatur in 30 Prozent bis > 95 Prozent Ausbeute episulfidiert werden. Beim Schwefeltransfer vom Sulten auf 1-Methoxycycloocten entsteht das Produkt einer Insertion des Enolethers in die O-S-Bindung des Sultens in 69 Prozent Ausbeute. Wird das Sulten mit Cyclooctin und einem {\"A}quivalent Trifluoressigs{\"a}ure oder einer anderen starken S{\"a}ure umgesetzt, wird ein Thiireniumion erhalten, das in stark saurer L{\"o}sung bis zu 24 h persistent ist und unter neutralen Bedingungen zu einem Dien umlagert. Die Bildung des Thiireniumions ist unter Einwirkung von Base reversibel. Mit Dithiacyclononin wird ein analoges Thiireniumion postuliert, das jedoch nicht direkt beobachtet werden kann. Persistentes Endprodukt dieser Reaktion ist ein Thioacetal. Das Thiophenendoperoxid wurde durch Tieftemperatur-Photooxygenierung des entsprechenden Thiophens in situ generiert. Bei der Thermolyse in Gegenwart von Cyclooctin bildet sich diastereoselektiv in 70 Prozent Ausbeute ein Episulfid. Bei der Reaktion des nucleophilen Schwefeldonors Thiotosylat mit Ninhydrin oder Indantrion in Gegenwart von trans-Cycloocten entsteht ein Cycloaddukt in bis zu 63 Prozent Ausbeute, w{\"a}hrend das Episulfid des trans-Cyclooctens nur in maximal 18 Prozent Ausbeute erhalten wird. Mit dem Schwefelnucleophil Diethylphosphorothioat und Indantrion wird neben dem Cycloaddukt das Diethylphosphat generiert. Wird Alloxanhydrat als Substrat verwendet, entsteht ein analoges Cycloaddukt in 33 Prozent Ausbeute. Indantrion geht mit 1 Methoxycycloocten eine Carbonyl-En-Reaktion ein, bei der ausschließlich ein Regioisomer in 51 Prozent Ausbeute entsteht.}, subject = {Schwefelorganische Verbindungen}, language = {de} } @phdthesis{Feizy2019, author = {Feizy, Nilab}, title = {iClick-Reaktionen von Palladium(II)azid- und Platin(II)azid-Komplexen mit tridentaten N,N,N-Chelatliganden und elektronenarmen Alkinen}, doi = {10.25972/OPUS-17893}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178938}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Katalysatorfreie [3+2]-Cycloadditionen von Aziden mit Alkinen werden in der bioorthogonalen Chemie h{\"a}ufig verwendet und haben großes Potential zur milden Synthese von Biokonjugaten. W{\"a}hrend solche Reaktionen in der Ligandenperipherie von Metallkomplexen h{\"a}ufiger angewendet werden ist, sind solche Reaktionen direkt in der inneren Koordinationssph{\"a}re von Metallzentren bisher nur wenig erforscht. Die neue Beispiele daf{\"u}r sind die Synthese und Untersuchungen der Kinetik und Reaktivit{\"a}t einer Reihe von Rhodium(III)azid-Halbsandwichkomplexen der allgemeinen Formel [Rh(Cp*)(N3)(bpyR,R)]+ oder von isoelektronische und isostrukturelle Molybd{\"a}n(II)azid- und Wolfram(II)azid-Komplexe mit verschiedenen elektronenarme Alkine. Das Ziel der vorliegenden Arbeit waren daher iClick-Reaktionen (engl. inorganic click, „iClick") von Palladium(II)azid- und Platin(II)azid-Komplexen der allgemeinen Formel [M(N3)(L)]+ und [M(N3)(L)] mit elektronenarmen Alkinen Dimethylacetylendicarboxylat (DMAD) und 4,4,4-Trifluorobut-2-ins{\"a}ureethylester. Als Liganden kamen die N,N,N-Chelatoren 1,3-Bis(arylimino)isoindolin (HL1-4) die sich nur im Bezug auf die Position der Methylgruppen in den Pyridinringen unterscheiden, 6',6"-Dimethyl-2',2:6,2"-terpyridin (L5) und 2,6-Bis(3-pyridazinyl)pyridin (L6) zum Einsatz. Die Reaktionen von L1-L4 mit [MCl2(cod)] (M = Pd, Pt) liefert neutrale Komplexe [MCl(L1-3)] und f{\"u}r L5 einfach geladene [MCl(L5)]+. Das koordinierte Chlorid wurde dann mit Natriumazid substituiert. Im abschließenden Teil der Arbeit wurde die zwei Alkinen in iClick-Reaktion verwendet um Palladium(II)- und Platin-Triazolat-Komplexe zu synthetisieren. F{\"u}r die resultierenden Triazolat-Komplexe wurde eine N2-koordinierten des Triazolat-Liganden durch R{\"o}ntgenstrukturanalyse f{\"u}r baii-Triazolat-Komplexe best{\"a}tigt. Besonderes Merkmal dieser Verbindungen ist, dass der Triazolat-Ligand aus Platzmangel senkrecht zum 1,3-Bis(arylimino)isoindolin-Ligand steht. In verwandten Terpyridin-Komplexen sind der mono- und tridentate Ligand dagegen coplanar. Mit 1,3-Bis(6-methyl-2-pyridylimino)isoindolin als Ligand konnten man keine Metall-Komplexe hergestellt werden, da die zus{\"a}tzlichen Methylgruppem in 6',6"-Positionen aus sterische Gr{\"u}nden eine Reaktion mit [MCl2(cod)] verhindern. Auch der in drei Stufen synthetisierte Ligand 6',6"-Dimethyl-2',2:6,2"-terpyridin der im Vergleich zu Terpyridin zwei zus{\"a}tzliche Methylgruppen in 6',6"-Position besitzen reagiert nur mit [PdCl2(cod)] nicht aber mit [PtCl2(cod)], da der Ionenradius von Pt(II) gr{\"o}ßer als der von Pd(II) ist. Die hergestellte Chlorid-, Azid- und Triazolat-Komplexe mit L5 als N,N,N-Chelator waren nur in DMSO L{\"o}slich. Darin zersetzt es sich jedoch teilweise wieder in den freien Liganden. Die zus{\"a}tzlichen Methylgruppem in 6',6"-Positionen verhindern aus sterische Gr{\"u}nden die Chlorid-, Azid- und Triazolat-Komplexe stabil zu bleiben. Ligand L6 konnte nur in sehr niedrige Ausbeute isoliert werden, da in der letzten Stufe bzw. bei Stille-Kupplung zwischen 2,6-Bis(trimethylstannyl)pyridin und 3-Iodopyridazin die Homokupplungsprodukte von 3-Iodopyridazin entsteht, sodass die nicht getrennt werden konnten. Aufgrund der niedrigen Ausbeute wurden dann mit L6 keine Metall-Komplexe hergestellt. Die Kinetik der iClick-Reaktion ist ein entscheidender Faktor, wenn diese f{\"u}r die Markierung von Bio(makro)molek{\"u}len eingesetzt werden soll, da die Markierungsreaktion schneller als der interessierende biologische Prozess ablaufen muss. Daher wurden mit IR- und UV/Vis-Spektroskopie die Geschwindigkeitskonstanten pseudoerster Ordnung f{\"u}r die iClick-Reaktion der verschiedenen baii-Palladium(II)azid- und baii-Platin(II)azid-Komplexe mit Dimethylacetylendicarboxylat (DMAD) und 4,4,4-Trifluorobut-2-ins{\"a}ureethylester bestimmt. Hier sollte insbesondere der Einfluss der zus{\"a}tzlichen Methylgruppen in 4',4"- bzw. 5',5"-Positionen am 1,3-Bis(arylimino)isoindolin-Liganden sowie die Variation des Metallzentrums und Alkins auf die Geschwindigkeit der iClick-Reaktionen untersucht werden. Mit IR-Spektroskopie wurden Geschwindigkeitskonstanten um (2.8-4.9)⋅10-4 s-1 an Alkinen erhalten. Die Einf{\"u}hrung elektronenschiebender Methylgruppen in 4',4"- bzw. 5',5"-Positionen am 1,3-Bis(arylimino)isoindolin-Liganden f{\"u}hrt zu einer Erh{\"o}hung der Geschwindigkeitskonstant einem Faktor von 1.3 bzw. 1.2 gegen{\"u}ber 1,3-Bis(2-pyridylimino)isoindolin. Die iClick-Reaktion mit Platin als Metall ist 1.3-mal schneller als mit Palladium. Elektronenarme Alkine wie 4,4,4-Trifluorobut-2-ins{\"a}ureethylester f{\"u}hren im Vergleich zu Dimethylacetylendicarboxylat (DMAD) zu einer 1.8-fachen Erh{\"o}hung der Reaktionsgeschwindigkeit. Mit UV/Vis-Spektroskopie wurden niedrigere Geschwindigkeitskonstanten um 8.9·10-6 - 3.3·10-5 s-1 nur f{\"u}r die iClick-Reaktion der 1,3-Bis(arylimino)isoindolinplatin(II)azid-Komplexe mit Dimethylacetylendicarboxylat (DMAD) und 4,4,4-Trifluorobut-2-ins{\"a}ureethylester bestimmt, weil die Spektralen Unterschiede zwischen Azid-Vorstufe und Triazolat-Produkt mit Palladium als Metallzentren zu gering sind. Auch hier konnte die Erh{\"o}hung der Geschwindigkeitskonstanten durch Verwendung elektronen{\"a}rmerer Alkine best{\"a}tigt werden. Hier sollte die iClick-Reaktion in Zukunft f{\"u}r gr{\"o}ßere Auswahlm{\"o}glichkeiten an Chelatoren optimiert und außerdem die Geschwindigkeitskonstanten der Bildung von iClick-Produkten mit anderen Methoden untersucht werden, bevor biologische Tests durchgef{\"u}hrt werden.}, subject = {Alkine}, language = {de} } @phdthesis{Bauer2011, author = {Bauer, Florian}, title = {Untersuchungen zur Diborierung unges{\"a}ttigter Systeme mit [2]Borametalloarenophanen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-57209}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Im Rahmen dieser Arbeit wurde die {\"U}bergangsmetall-katalysierte Diborierung verschiedener unges{\"a}ttigter Substrate untersucht. Die Diborierung von Dialkinen erm{\"o}glichte die Synthese einer Reihe neuer Verbindungen, welche sich in drei Gruppen einteilen lassen: i) Einkernige [4]Diboradicarbaferrocenophane, die zus{\"a}tzlich entweder direkt oder {\"u}ber einen Spacer eine CC Dreifachbindung tragen; ii) zweikernige Komplexe, bei denen das [4]Ferrocenophanfragment {\"u}ber die zweite CC Dreifachbindung an ein niedervalentes Platinfragment koordiniert ist und iii) zweikernige Bis [4]diboradicarbaferrocenophane durch die Diborierung beider Dreifachbindungen des Dialkins. Von den vier Vertreter von Gruppe i) ist bei zweien die zweite CC Dreifachbindung direkt an die Bis(boryl)alkeneinheit gebunden, w{\"a}hrend bei den anderen eine Spacergruppe vorhanden ist. Die Darstellung der Komplexe kann entweder durch katalytische Diborierung der Dialkine durch [Fe{C5H4B(NMe2)}2] oder durch direkte Umsetzung mit [Fe{C5H4B(NMe2)}2Pt(PEt3)2] erfolgen. Hingegen f{\"u}hrt die Umsetzung von [Fe{C5H4B(NMe2)}2Pt(PEt3)2] mit {\"a}quimolaren Mengen Dialkin zur Bildung der zweiten Verbindungen von Gruppe ii). Hier ist die zweite CC Dreifachbindung an ein [Pt(PEt3)2] Fragment koordiniert, wodurch ein Platinalkinkomplex entsteht. Unter den Produkten der Gruppe iii) sind zuerst die Komplexe zu nennen, die zwei Ferrocenophangruppen tragen. Die so synthetisierten Produkte weisen jeweils zwei chirale Ebenen auf und wurden deshalb als Diastereomerenpaare erhalten. Es konnte gezeigt werden, dass die einzelnen Diastereomere durch Erhitzen in L{\"o}sung ineinander umgewandelt werden k{\"o}nnen. Mittels DFT-Rechnungen konnte zudem ein plausibler Mechanismus aufgedeckt werden. Neben den Bis [4]ferrocenophanen wurde ein Komplex dargestellt, in dem ein [4]Diboradicarbaferrocenophanfragment {\"u}ber eine Spacerfunktion an einen entsprechenden von Bis(benzol)chrom abgeleiteten Metalloarenophanrest gebunden ist. Weiterhin wurden durch Umsetzung von [Pt(PEt3)3] mit den entsprechenden Dialkinen in unterschiedlicher St{\"o}chiometrie jeweils drei einkernige bzw. zweikernige Platinalkinkomplexe sowie ein Platinalkenkomplex synthetisiert. Die IR-spektroskopischen Untersuchungen legen die Formulierung als Platinacyclopropene bzw. Platinacyclopropane nahe. Durch die Diborierung von Isocyaniden konnte unter bemerkenswert milden Reaktionsbedingungen eine Reihe von chiralen, einkernigen Bis(boryl)iminokomplexen dargestellt werden. Die Synthese verl{\"a}uft entweder durch direkte Umsetzung der Diborane(4) mit den entsprechenden Isocyaniden oder, mit verl{\"a}ngerten Reaktionszeiten auch durch Diborierung der Isocyanide mittels der entsprechenden [3]Metalloarenophane. Durch Umsetzung von [2]Borametalloarenophanen mit Diisocyaniden konnten zudem verschiedene zwei- bzw. dreikernige Bis(boryl)iminokomplexe zug{\"a}nglich gemacht werden. Die hierzu ausgew{\"a}hlten Diisocyanide tragen wiederum eine Spacereinheit zwischen den beiden NC Funktionalit{\"a}ten. Genau wie bei den Reaktionen von Dialkinen treten auch hier die Produkte als Paare von Diastereomeren auf. Ein weiteres Projekt besch{\"a}ftigte sich mit der oxidativen Addition von [Fe{C5H4B(NMe2)}2] an verschiedene {\"U}bergangsmetallkomplexe. Die Umsetzungen f{\"u}hrten allerdings in keinem Fall zur Bildung der gew{\"u}nschten Bis(boryl)metallkomplexe. Bei verschiedenen Platinkomplexen kann jedoch die Bildung eines einheitlichen Produkts beobachtet werden. Es wird deshalb in {\"U}bereinstimmung mit den spektroskopischen Daten vermutet, dass es sich dabei um ein [2.2]Diboraferrocenophan handelt. Eine saubere Isolierung des Produkts gelingt jedoch nicht, weshalb der strukturelle Nachweis bislang nicht gef{\"u}hrt werden kann. Abschließend konnte dabei gezeigt werden, dass mehrt{\"a}giges Erhitzen von [Fe{C5H4B(NMe2)}2Pt(PEt3)2] in L{\"o}sung hochselektiv zur Bildung des mutmaßlichen [2.2]Diboraferrocenophans f{\"u}hrt. Weiterhin ist auch die Umsetzung von [Fe{C5H4B(NMe2)}2] mit katalytischen Mengen [Pt{P(CH2Cy)3}2] erfolgreich, f{\"u}hrte jedoch nicht zu einer Isolierung des Produkts in Substanz.}, subject = {Ferrocen}, language = {de} }