@phdthesis{Humrich2009, author = {Humrich, Jan}, title = {G-Protein betagamma-Regulation durch Phosducin-like Proteine}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-40059}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Phosducin-like Protein existiert in zwei Splicevarianten: PhLPLONG (PhLPL) und PhLPSHORT (PhLPS). Sie unterscheiden sich in der L{\"a}nge ihres N-Terminus und in ihrem Expressionsmusters: Die lange Form (PhLPL) wird ubiquit{\"a}r exprimiert und bindet G-Protein-betagamma-Untereinheiten (Gbetagama), was zur Hemmung von Gbetagamma-abh{\"a}ngigen Funktionen f{\"u}hrt. Der um 83 Aminos{\"a}uren verl{\"a}ngerte N-Terminus besitzt ein hoch konserviertes Motiv, welches f{\"u}r die Gbetagamma-Bindung und Regulation von entscheidender Bedeutung ist. Im Gegensatz hierzu besitzt die kurzen Spliceform PhLPS, deren Expression in verschiedenen Gewebetypen deutlich geringer ist, diese hoch konservierte Region nicht. In der vorliegenden Arbeit wurde nun erstmals die Rolle von PhLPL und PhLPS bei der Gbetagamma-Regulation in intakten Zellen untersucht. Hierbei konnte {\"u}berraschenderweise gefunden werden, dass PhLPS der potentere und effizientere Regulator f{\"u}r Gbetagamma-abh{\"a}ngige Signale war. PhLPL hingegen schien in seiner Gbetagamma-regulierenden F{\"a}higkeit limitiert zu werden. Die Ursache dieser Limitierung von PhLPL in intakten Zellen wurde auf eine konstitutive Phosphorylierung seines verl{\"a}ngerten N-Terminus durch die ubiquit{\"a}re Casein Kinase 2 (CK2) zur{\"u}ckgef{\"u}hrt. Die verantwortlichen Phosphorylierungsstellen (S18, T19, S20) wurde identifiziert und die Mutation der CK2-Phosphorylierungsstellen (PhLPLA18-20) f{\"u}hrte zu einer Verbesserung der hemmenden Funktion von PhLPL in Zellen. In vitro-Assays zur Bindungsf{\"a}higkeit von rekombinantem PhLPL (vor und nach CK2-Phosphorylierung) zeigten allerdings: die Phosphorylierung beeinflusste die Affinit{\"a}t nicht. Eine genaue Analyse der N-terminalen Strukuren von PhLPL zeigte indes, dass die Regulationsf{\"a}higkeit von PhLPL in intakten Zellen vor allem in dem konservierten Gbetagamma-Bindungsmotiv zu suchen war. Die Mutation einer einzigen Aminos{\"a}ure (W66V) war ausreichend, um sowohl die Gbetagamma-Bindungsf{\"a}higkeit, als auch die F{\"a}higkeit zur funktionellen Hemmung in intakten Zellen zu verlieren. Was war also der Mechanismus der Hemmung von Gbetagamma durch PhLPS und die phophorylierungsdefiziente Mutante von PhLPL? Ein erster Hinweis hierauf kam von der Beobachtung, dass die Gbeta- und Ggamma-Untereinheiten in Anwesenheit von PhLPS in ihrem Proteingehalt deutlich reduziert vorlagen (wie in Western Blots gezeigt). Dieser Mechanismus schien von proteasomalen Abbauwegen abzuh{\"a}ngen (gezeigt durch Effekte des spezifischen Proteasominhibitors Lactazystin). Allerdings schien eine Stabilisierung der Gbeta- und Ggamma-Untereinheiten (durch N-terminale Fusion mit einem Protein zur vitalen Proteinf{\"a}rbung) nicht die Funktionsf{\"a}higkeit von Gbetagamma in Anwesenheit von PhLPS bewahren zu k{\"o}nnen. Ganz im Gegenteil, es wurde gezeigt, dass Gbeta und Ggamma hierbei nicht mehr zu einem funktionellen Dimer assoziierten. Dies war ein Hinweis darauf, dass m{\"o}glicherweise Proteinfaltungsmechanismen bei der Regulation essentiell sein k{\"o}nnten. Eine postulierte Rolle bei der Faltung von WD40-Repeatproteinen wie der Gbeta-Untereinheit wurde dem Chaperonin-Komplex CCT (chaperonin containing TCP) zugedacht. Folgerichtig konnte PhLPS mit seinen funktionell aktiven Dom{\"a}nen an endogenes TCP-1alpha (einer Untereinheit von CCT) binden. Ferner konnte gezeigt werden, dass die Hemmung des CCT-Komplexes durch RNA-Interferenz mit TCP-1alpha ebenso wie PhLPS zur spezifischen Reduktion von Gbetagamma f{\"u}hrte. In dieser Arbeit wurde also ein neuartiger Mechanismus der G-Protein-Regulation durch Hemmung der Proteinfaltung von Gbetagamma beschrieben. Ein Schaltmechanismus zwischen direkter Gbetagamma-Bindung (induziert durch CK2-Phosphorylierung von PhLPL) und Hemmung der Proteinfaltung von Gbetagamma (induziert durch alternatives Splicen oder durch Dephosphorylierung von PhLP) wird postuliert.}, subject = {G-Proteine}, language = {de} } @phdthesis{Filatova2009, author = {Filatova, Alina}, title = {Mechanism and Control of Nuclear-Cytoplasmic Translocation of the Transporter Regulator RS1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-38512}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Das RS1 Protein (Gen RSC1A1) beteiligt sich an der Regulation des Na+-D-Glukose-kotransporters SGLT1 und einiger anderer Transporter. In subkonfluenten LLC-PK1 Zellen hemmt RS1 die Freisetzung von SGLT1 aus dem trans-Golgi-Netzwerk und die Transkription von SGLT1. W{\"a}hrend es sich in konfluenten Zellen haupts{\"a}chlich im Zytoplasma befindet, ist RS1 in subkonfluenten Zellen im Kern und im Zytoplasma lokalisiert. In der vorliegenden Arbeit wurden Mechanismus und Regulation der konfluenzabh{\"a}ngigen Kernlokalisation von RS1 untersucht. Dabel konnte gezeigt werden, dass die von Konfluenz abh{\"a}ngige Kernlokalisation von RS1 durch den Zellzyklus reguliert wird. In RS1 aus Sus scrofa (pRS1) wurde eine Sequenz identifiziert („nuclear shuttling signal", NS), die f{\"u}r die konfluenzabh{\"a}ngige Verteilung von RS1 verantwortlich ist und sowohl das Signal f{\"u}r die Kernlokalisation (NLS) als auch das Signal f{\"u}r den Export aus dem Kern (NES) beinhaltet. Die NLS und NES Signale von RS1 vermitteln die Translokation des Proteins in den Kern und aus dem Kern mit Hilfe von Importin \&\#946;1 bzw. CRM1, wobei die Verteilung von RS1 zwischen Kern und Zytoplasma durch die Aktivit{\"a}t des Exportsystems bestimmt wird. Es wurde gezeigt, dass die benachbarte Proteinkinase C (PKC) Phosphorylierungsstelle an Serin 370 von pRS1 die NS-gesteuerte Kernlokalisierung kontrolliert und f{\"u}r die vom Zellzyklus abh{\"a}ngige Kernlokalisation notwendig ist. Aufgrund der Ergebnisse der ortsgerichteten Mutagenese, PKC-Aktivierungsexperimenten und Massenspektrometrie-Analyse des Phosphorylierungsmusters von RS1 wurde ein Modell vorgeschlagen, das die Regulation der Kernlokalisation des RS1 Proteins in LLC-PK1 Zellen beschreibt. Dem Modell zufolge wird RS1 in subkonfluenten Zellen stark in den Kern bef{\"o}rdert, w{\"a}hrend der Export von RS1 aus dem Kern nicht stattfindet. Das f{\"u}hrt zur Anreicherung von RS1 im Kern. Nach Konfluenz wird Serin 370 durch PKC phosphoryliert, was die Steigerung des RS1-Exports aus dem Kern beg{\"u}nstigt und die {\"u}berwiegend zytoplasmatische Lokalisation des Proteins in konfluenten Zellen hervorruft. Die konfluenzabh{\"a}ngige Regulation der Lokalisation von RS1 kann die Expression von SGLT1 w{\"a}hrend der Regeneration von Enterozyten im D{\"u}nndarm und der Regeneration von Zellen der Nierentubuli nach hypox{\"a}mischem Stress kontrollieren. Außerdem deutet die Analyse der Genexpression in embryonalen Fibroblasten der RS-/- M{\"a}use deutet darauf hin, dass die transkriptionale Regulation durch RS1 im Zellzyklus und bei der Zellteilung eine wichtige Rolle spielen kann. Da die Lokalisation von RS1 zellzyklusabh{\"a}ngig ist, kann RS1 f{\"u}r die Regulation der Transporter in spezifischen Phasen des Zellzyklus wichtig sein.}, subject = {RS1}, language = {en} }