@article{ToyamaWernerRuizBedoyaetal.2021, author = {Toyama, Yoshitaka and Werner, Rudolf A. and Ruiz-Bedoya, Camilo A. and Ordonez, Alvaro A. and Takase, Kei and Lapa, Constantin and Jain, Sanjay K. and Pomper, Martin G. and Rowe, Steven P. and Higuchi, Takahiro}, title = {Current and future perspectives on functional molecular imaging in nephro-urology: theranostics on the horizon}, series = {Theranostics}, volume = {11}, journal = {Theranostics}, number = {12}, doi = {10.7150/thno.58682}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260090}, pages = {6105-6119}, year = {2021}, abstract = {In recent years, a paradigm shift from single-photon-emitting radionuclide radiotracers toward positron-emission tomography (PET) radiotracers has occurred in nuclear oncology. Although PET-based molecular imaging of the kidneys is still in its infancy, such a trend has emerged in the field of functional renal radionuclide imaging. Potentially allowing for precise and thorough evaluation of renal radiotracer urodynamics, PET radionuclide imaging has numerous advantages including precise anatomical co-registration with CT images and dynamic three-dimensional imaging capability. In addition, relative to scintigraphic approaches, PET can allow for significantly reduced scan time enabling high-throughput in a busy PET practice and further reduces radiation exposure, which may have a clinical impact in pediatric populations. In recent years, multiple renal PET radiotracers labeled with C-11, Ga-68, and F-18 have been utilized in clinical studies. Beyond providing a precise non-invasive read-out of renal function, such radiotracers may also be used to assess renal inflammation. This manuscript will provide an overview of renal molecular PET imaging and will highlight the transformation of conventional scintigraphy of the kidneys toward novel, high-resolution PET imaging for assessing renal function. In addition, future applications will be introduced, e.g. by transferring the concept of molecular image-guided diagnostics and therapy (theranostics) to the field of nephrology.}, language = {en} } @article{WernerHiguchiPomperetal.2021, author = {Werner, Rudolf A. and Higuchi, Takahiro and Pomper, Martin G. and Rowe, Steven P.}, title = {Theranostics in oncology — thriving, now more than ever}, series = {Diagnostics}, volume = {11}, journal = {Diagnostics}, number = {5}, issn = {2075-4418}, doi = {10.3390/diagnostics11050805}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236662}, year = {2021}, abstract = {Tracing its roots back to the 1940s, theranostics in nuclear oncology has proved successful mainly due to the beneficial effects of image-guided therapeutic concepts for patients afflicted with a variety of different cancers. The majority of these treatments are not only characterized by substantial prolongation of progression-free and overall survival, but are also generally safe, rendering theranostic agents as an attractive treatment option in various clinical scenarios in oncology. In this Special Issue Novel Theranostic Agents, nine original articles from around the globe provide further evidence on the use of the theranostic concept for neuroendocrine neoplasm (NEN), prostate cancer (PC), meningioma, and neuroblastoma. The investigated diagnostic and therapeutic radiotracers target not only established structures, such as somatostatin receptor, prostate-specific membrane antigen or norepinephrine transporter, but also recently emerging targets such as the C-X-C motif chemokine receptor 4. Moreover, the presented original articles also combine the concept of theranostics with in-depth read-out techniques such as radiomics or novel reconstruction algorithms on pretherapeutic scans, e.g., for outcome prediction. Even 80 years after its initial clinical introduction, theranostics in oncology continues to thrive, now more than ever.}, language = {en} }