@phdthesis{Flechsenhar2019, author = {Flechsenhar, Aleya Felicia}, title = {The Ubiquity of Social Attention - a Detailed Investigation of the Underlying Mechanisms}, doi = {10.25972/OPUS-18452}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-184528}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {This dissertation highlights various aspects of basic social attention by choosing versatile approaches to disentangle the precise mechanisms underlying the preference to focus on other human beings. The progressive examination of different social processes contrasted with aspects of previously adopted principles of general attention. Recent research investigating eye movements during free exploration revealed a clear and robust social bias, especially for the faces of depicted human beings in a naturalistic scene. However, free viewing implies a combination of mechanisms, namely automatic attention (bottom-up), goal-driven allocation (top-down), or contextual cues and inquires consideration of overt (open exploration using the eyes) as well as covert orienting (peripheral attention without eye movement). Within the scope of this dissertation, all of these aspects have been disentangled in three studies to provide a thorough investigation of different influences on social attention mechanisms. In the first study (section 2.1), we implemented top-down manipulations targeting non-social features in a social scene to test competing resources. Interestingly, attention towards social aspects prevailed, even though this was detrimental to completing the requirements. Furthermore, the tendency of this bias was evident for overall fixation patterns, as well as fixations occurring directly after stimulus onset, suggesting sustained as well as early preferential processing of social features. Although the introduction of tasks generally changes gaze patterns, our results imply only subtle variance when stimuli are social. Concluding, this experiment indicates that attention towards social aspects remains preferential even in light of top-down demands. The second study (section 2.2) comprised of two separate experiments, one in which we investigated reflexive covert attention and another in which we tested reflexive as well as sustained overt attention for images in which a human being was unilaterally located on either the left or right half of the scene. The first experiment consisted of a modified dot-probe paradigm, in which peripheral probes were presented either congruently on the side of the social aspect, or incongruently on the non-social side. This was based on the assumption that social features would act similar to cues in traditional spatial cueing paradigms, thereby facilitating reaction times for probes presented on the social half as opposed to the non-social half. Indeed, results reflected such congruency effect. The second experiment investigated these reflexive mechanisms by monitoring eye movements and specifying the location of saccades and fixations for short as well as long presentation times. Again, we found the majority of initial saccades to be congruently directed to the social side of the stimulus. Furthermore, we replicated findings for sustained attention processes with highest fixation densities for the head region of the displayed human being. The third study (section 2.3), tackled the other mechanism proposed in the attention dichotomy, the bottom-up influence. Specifically, we reduced the available contextual information of a scene by using a gaze-contingent display, in which only the currently fixated regions would be visible to the viewer, while the remaining image would remain masked. Thereby, participants had to voluntarily change their gaze in order to explore the stimulus. First, results revealed a replication of a social bias in free-viewing displays. Second, the preference to select social features was also evident in gaze-contingent displays. Third, we find higher recurrent gaze patterns for social images compared to non-social ones for both viewing modalities. Taken together, these findings imply a top-down driven preference for social features largely independent of contextual information. Importantly, for all experiments, we took saliency predictions of different computational algorithms into consideration to ensure that the observed social bias was not a result of high physical saliency within these areas. For our second experiment, we even reduced the stimulus set to those images, which yielded lower mean and peak saliency for the side of the stimulus containing the social information, while considering algorithms based on low-level features, as well as pre-trained high-level features incorporated in deep learning algorithms. Our experiments offer new insights into single attentional mechanisms with regard to static social naturalistic scenes and enable a further understanding of basic social processing, contrasting from that of non-social attention. The replicability and consistency of our findings across experiments speaks for a robust effect, attributing social attention an exceptional role within the general attention construct, not only behaviorally, but potentially also on a neuronal level and further allowing implications for clinical populations with impaired social functioning.}, subject = {Aufmerksamkeit}, language = {en} } @phdthesis{Goetz2019, author = {G{\"o}tz, Felix Johannes}, title = {Social Cueing of Numerical Magnitude : Observed Head Orientation Influences Number Processing}, doi = {10.25972/OPUS-18716}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187161}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {In many parts of the modern world, numbers are used as tools to describe spatial relationships, be it heights, latitudes, or distances. However, this connection goes deeper as a myriad of studies showed that number representations are rooted in space (vertical, horizontal, and/or radial). For instance, numbers were shown to affect spatial perception and, conversely, perceptions or movements in space were shown to affect number estimations. This bidirectional link has already found didactic application in the classroom when children are taught the meaning of numbers. However, our knowledge about the cognitive (and neuropsychological) processes underlying the numerical magnitude operations is still very limited. Several authors indicated that the processing within peripersonal space (i.e. the space surrounding the body in reaching distance) and numerical magnitude operations are functionally equivalent. This assumption has several implications that the present work aims at describing. For instance, vision and visuospatial attention orienting play a prominent role for processing within peripersonal space. Indeed, both neuropsychological and behavioral studies also suggested a similar role of vision and visuospatial attention orienting for number processing. Moreover, social cognition research showed that movements, posture and gestures affect not only the representation of one's own peripersonal space, but also the visuospatial attention behavior of an observer. Against this background, the current work tests the specific implication of the functional equivalence assumption that the spatial attention response to an observed person's posture should extend to the observer's numerical magnitude operations. The empirical part of the present work tests the spatial attention response of observers to vertical head postures (with continuing eye contact to the observer) in both perceptual and numerical space. Two experimental series are presented that follow both steps from the observation of another person's vertical head orientation (within his/her peripersonal space) to the observer's attention orienting response (Experimental series A) as well as from there to the observer's magnitude operations with numbers (Experimental Series B). Results show that the observation of a movement from a neutral to a vertical head orientation (Experiment 1) as well as the observation of the vertical head orientation alone (Experiment 3) shifted the observer's spatial attention in correspondence with the direction information of the observed head (up vs. down). Movement from a vertical to a neutral end position, however, had no effect on the observer's spatial attention orienting response (Experiment 2). Furthermore, following down-tilted head posture (relative to up- or non-tilted head orientation), observers generated smaller numbers in a random number generation task (range 1- 9, Experiment 4), gave smaller estimates to numerical trivia questions (mostly multi-digit numbers, Experiment 5) and chose response keys less frequently in a free choice task that was associated with larger numerical magnitude in a intermixed numerical magnitude task. Experimental Series A served as groundwork for Experimental Series B, as it demonstrated that observing another person's head orientation indeed triggered the expected directional attention orienting response in the observer. Based on this preliminary work, the results of Experimental Series B lend support to the assumption that numerical magnitude operations are grounded in visuospatial processing of peripersonal space. Thus, the present studies brought together numerical and social cognition as well as peripersonal space research. Moreover, the Empirical Part of the present work provides the basis for elaborating on the role of processing within peripersonal space in terms of Walsh's (2003, 2013) Theory of Magnitude. In this context, a specification of the Theory of Magnitude was staked out in a processing model that stresses the pivotal role of spatial attention orienting. Implications for mental magnitude operations are discussed. Possible applications in the classroom and beyond are described.}, subject = {Soziale Wahrnehmung}, language = {en} } @phdthesis{Rubo2019, author = {Rubo, Marius}, title = {Social Attention in the Laboratory, in Real Life and in Virtual Reality}, doi = {10.25972/OPUS-18845}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-188452}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Social attention is a ubiquitous, but also enigmatic and sometimes elusive phenomenon. We direct our gaze at other human beings to see what they are doing and to guess their intentions, but we may also absorb social events en passant as they unfold in the corner of the eye. We use our gaze as a discrete communication channel, sometimes conveying pieces of information which would be difficult to explicate, but we may also find ourselves avoiding eye-contact with others in moments when self-disclosure is fear-laden. We experience our gaze as the most genuine expression of our will, but research also suggests considerable levels of predictability and automaticity in our gaze behavior. The phenomenon's complexity has hindered researchers from developing a unified framework which can conclusively accommodate all of its aspects, or from even agreeing on the most promising research methodologies. The present work follows a multi-methods approach, taking on several aspects of the phenomenon from various directions. Participants in study 1 viewed dynamic social scenes on a computer screen. Here, low-level physical saliency (i.e. color, contrast, or motion) and human heads both attracted gaze to a similar extent, providing a comparison of two vastly different classes of gaze predictors in direct juxtaposition. In study 2, participants with varying degrees of social anxiety walked in a public train station while their eye movements were tracked. With increasing levels of social anxiety, participants showed a relative avoidance of gaze at near compared to distant people. When replicating the experiment in a laboratory situation with a matched participant group, social anxiety did not modulate gaze behavior, fueling the debate around appropriate experimental designs in the field. Study 3 employed virtual reality (VR) to investigate social gaze in a complex and immersive, but still highly controlled situation. In this situation, participants exhibited a gaze behavior which may be more typical for real-life compared to laboratory situations as they avoided gaze contact with a virtual conspecific unless she gazed at them. This study provided important insights into gaze behavior in virtual social situations, helping to better estimate the possible benefits of this new research approach. Throughout all three experiments, participants showed consistent inter-individual differences in their gaze behavior. However, the present work could not resolve if these differences are linked to psychologically meaningful traits or if they instead have an epiphenomenal character.}, subject = {Aufmerksamkeit}, language = {en} } @phdthesis{Roesler2020, author = {R{\"o}sler, Lara}, title = {Behavioral and Neural Mechanisms of Social Attention}, doi = {10.25972/OPUS-21609}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-216092}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Humans in our environment are of special importance to us. Even if our minds are fixated on tasks unrelated to their presence, our attention will likely be drawn towards other people's appearances and their actions. While we might remain unaware of this attentional bias at times, various studies have demonstrated the preferred visual scanning of other humans by recording eye movements in laboratory settings. The present thesis aims to investigate the circumstances under and the mechanisms by which this so-called social attention operates. The first study demonstrates that social features in complex naturalistic scenes are prioritized in an automatic fashion. After 200 milliseconds of stimulus presentation, which is too brief for top-down processing to intervene, participants targeted image areas depicting humans significantly more often than would be expected from a chance distribution of saccades. Additionally, saccades towards these areas occurred earlier in time than saccades towards non-social image regions. In the second study, we show that human features receive most fixations even when bottom-up information is restricted; that is, even when only the fixated region was visible and the remaining parts of the image masked, participants still fixated on social image regions longer than on regions without social cues. The third study compares the influence of real and artificial faces on gaze patterns during the observation of dynamic naturalistic videos. Here we find that artificial faces, belonging to humanlike statues or machines, significantly predicted gaze allocation but to a lesser extent than real faces. In the fourth study, we employed functional magnetic resonance imaging to investigate the neural correlates of reflexive social attention. Analyses of the evoked blood-oxygenation level dependent responses pointed to an involvement of striate and extrastriate visual cortices in the encoding of social feature space. Collectively, these studies help to elucidate under which circumstances social features are prioritized in a laboratory setting and how this prioritization might be achieved on a neuronal level. The final experimental chapter addresses the question whether these laboratory findings can be generalized to the real world. In this study, participants were introduced to a waiting room scenario in which they interacted with a confederate. Eye movement analyses revealed that gaze behavior heavily depended on the social context and were influenced by whether an interaction is currently desired. We further did not find any evidence for altered gaze behavior in socially anxious participants. Alleged gaze avoidance or hypervigilance in social anxiety might thus represent a laboratory phenomenon that occurs only under very specific real-life conditions. Altogether the experiments described in the present thesis thus refine our understanding of social attention and simultaneously challenge the inferences we can draw from laboratory research.}, subject = {Aufmerksamkeit}, language = {en} }