@phdthesis{Schelter2003, author = {Schelter, J{\"u}rgen}, title = {Elektronentransferprozesse in gemischtvalenten Systemen, Redoxkaskaden und Polymeren auf Basis von Triarylaminredoxzentren}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8379}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Im Rahmen dieser Arbeit wurden Elektronentransferprozesse in Systemen, die auf Triphenylaminredoxzentren basieren, mit Hilfe spektroskopischer und elektrochemischer sowie spektroelektrochemischer Methoden studiert. Im ersten Teil der vorliegenden Arbeit wurden Bistriarylaminsysteme analog zu N,N,N',N'-Tetra(4-methoxyphenyl)-1,4-phenylendiamin (1) untersucht, deren Radikalkationen eine f{\"u}r gemischtvalente Systeme typische breite und insbesondere bei 1 stark asymmetrische IVCT-Absorptionsbande zeigen. Die Analyse dieser Banden nach Hush sowie einem modifizierten Modell, das der Vibronic coupling-Theorie angelehnt ist, deutet auf die Abnahme der elektronischen Kopplung mit zunehmender Vergr{\"o}ßerung des zentralen Phenylenspacers durch Naphthalin- (2) bzw. Anthracenspacer (3) und damit gr{\"o}ßerer sterischer Hinderung hin. Gleichzeitig nimmt aber mit der Vergr{\"o}ßerung des \&\#61552;-Systems des Spacers auch die Reorganisationsenergie \&\#61548; ab. Insgesamt verhalten sich alle drei Verbindungen sehr {\"a}hnlich, was insbesondere das Verh{\"a}ltnis von Absorptionsmaximum der IVCT-Bande zum zweifachen Wert der elektronischen Kopplung betrifft. Legt man vor allem das modifizierte Vibronic coupling-Modell zugrunde, so liegt dieses Verh{\"a}ltnis bei 1+, 2+ und 3+ sehr nahe bei 1, so daß alle drei Systeme sehr nahe am {\"U}bergang von Robin-Day-Klasse II zu Klasse III liegen. Weiterhin wurden {\"u}ber einen 1,4-Diethinylphenyl-Spacer verbr{\"u}ckte Bistriarylaminsysteme untersucht, bei denen durch Variation der Spacereinheit (1,4-Diethinylphenyl (5), 1,4-Diethinylnaphthalin (6), 1,4-Diethinyl-2,5-dimethoxyphenyl (10)) die Energie eines Br{\"u}ckenzustandes im Vergleich zu Zust{\"a}nden, bei denen das Radikal an einem Triarylaminzentrum lokalisiert ist, schrittweise abgesenkt wird. Die auftretenden Elektronentransferprozesse k{\"o}nnen mit Hilfe eines Dreiniveaumodells mit zwei voneinander unabh{\"a}ngigen Elektronentransferkoordinaten beschrieben werden. Es zeigt sich, daß bei elektronenarmen Spacern, wie z.B. bei 5+, der Elektronentransfer nach einem Superexchange-Mechanismus erfolgt. Bei der Verwendung einer elektronenreichen Dimethoxy-substituierten Br{\"u}cke wie in 10+ kann der Elektronentransfer neben dem Superexchange- auch nach einem Hopping-Mechanismus erfolgen. Bei Verbindungen, die einen 9,10-Diethinylanthracenspacer (8+ und 9+) enthalten, liegt der Br{\"u}ckenzustand energetisch sogar deutlich tiefer als der Zustand mit einem oxidierten Triphenylaminredoxzentrum. Im zweiten Abschnitt wurden gerichtete Elektronentransferprozesse an Redoxkaskaden und Dendrimeren, die auf Triarylaminredoxzentren basieren, studiert. Die M{\"o}glichkeit, die Redoxpotentiale von Triphenylaminzentren durch Substituenten zu beeinflussen, erlaubt die Synthese von Kaskaden mit einem vorgegebenen Redoxgradienten. Innerhalb einer Kaskade, die ein Acridin-Fluorophor, ein 4-Chlor-substituiertes sowie ein 4-Methoxy-substituiertes Triphenylaminredoxzentrum enth{\"a}lt (18), kann nach Anregung des Acridin-Chromophors in polaren L{\"o}sungsmitteln ein ladungsgetrennter Zustand erreicht werden, worauf sowohl statische und zeitaufgel{\"o}ste Fluoreszenzmessungen als auch transientenspektroskopische Untersuchungen hinweisen. Die Lebensdauer kann durch Verl{\"a}ngerung der Redoxkaskade durch ein weiteres Aminzentrum deutlich vergr{\"o}ßert werden. In unpolaren L{\"o}sungsmitteln erfolgt dagegen keine Ladungstrennung {\"u}ber die gesamte Kaskade. Ebenso tritt bei 20 (Kaskade aus Acridin, 4 Methoxy-substituiertem Triphenylamin und 4-Chlor-substituiertem Aminzentrum), wo der Redoxgradient entgegen zu 18 gerichtet ist, kein Ladungstransfer auf. Im dritten Teil dieser Arbeit wurden Verbindungen untersucht, die neben 1,4 Phenylendiamineinheiten in para-Position unsubstituierte Triphenylamine enthalten und sich elektrochemisch polymerisieren lassen. Die Eigenschaften der dotierten redoxaktiven Polymere werden durch die enthaltenen p-Phenylendiamin- und Benzidin-Substrukturen dominiert, wof{\"u}r haupts{\"a}chlich die geringe Wechselwirkung der einzelne Redoxzentren untereinander verantwortlich ist. Impedanzspektroskopische Untersuchungen zeigen eine Zunahme der Leitf{\"a}higkeit der dotierten Polymerfilme, wobei der Ladungstransfer vermutlich durch Hopping zwischen den p-Phenylendiamin- und Benzidinuntereinheiten erfolgt.}, language = {de} } @phdthesis{Kriegisch2005, author = {Kriegisch, Volker}, title = {Electron transfer processes between organic redox centres and electrodes via active bridges in self-assembled monolayers}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15892}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Cyclovoltammetrische Messungen der Ferrocenalkylthiole 1 - 3 belegen, dass homogene, gemischte Monolagen aus redoxaktiven Verbindungen und redoxinaktiven Alkylthiolen gebildet werden. Die von Creager et al. bestimmten ET Raten der Ferrocenalkylthiole 1 - 3 konnten hierbei verifiziert werden. Wie erwartet erfolgt eine Abnahme der ET Geschwindigkeit bei einer Kettenverl{\"a}ngerung des Alkylspacers von 2 nach 3. Eine unterschiedliche Konnektivit{\"a}t zwischen Redoxzentrum und Alkylspacer, z. B. die Einf{\"u}hrung einer Carbonyl-Funktion im Falle von 1, unter Beibehaltung der Kettenl{\"a}nge zeigt keinen bemerkbaren Einfluß auf den ET. Trotzt vergleichbaren Abstands der aromatischen Ferrocenthiole 4 und 5 zu der C8-Alkyl-Verbindung 2 zwischen Redoxzentrum und Elektrode, weisen diese aufgrund ihrer starken Konjugation sehr hohe ET Geschwindigkeiten auf. Die elektronischen Kopplungsfaktoren selbst deuten auf einen nichtadiabtischen ET zwischen Redoxzentrum und Elektrode hin. Wie erwartet kommt es zu einem Anwachsen der Kopplungsfaktoren bei sich verk{\"u}rzender Kettenl{\"a}nge oder bei Einf{\"u}hrung konjugierter Spacersysteme. Zusammenfassend kann gesagt werden, dass Erfahrungen hinsichtlich der Pr{\"a}paration der Monolagen gesammelt, die gemessenen ET Raten f{\"u}r der literaturbekannten Verbindungen 1 - 3 best{\"a}tigt und diese Informationen auf die konjugierten Verbindungen 4 und 5 angewandt werden konnten. Im zweiten Teil wurden die Triarylamin- (29, 32) und Phenothiazinalkylthiole (35) bez{\"u}glich ihres ET Verhaltens in gemischten Monolagen untersucht. Mittels Cyclovoltammetrie konnte gezeigt werden, daß einheitlich geformte, verd{\"u}nnte Monolagen vorliegen. Die ET Raten der Triarylamin- (29, 32) und Phenithiazinalkylthiole (35) sind jedoch um den Faktor 10 bis 100 h{\"o}her als vergleichbare Ferrocenalkylthiole gleicher Kettenl{\"a}nge [1, 2], wohingegen f{\"u}r Monolagen, welche [Ru(bpy)2(pp)]+-Alkythiole enthalten, {\"a}quivalente Werte gefunden wurden [3]. Die ET Geschwindigkeit wird von zwei Parametern beeinflusst: dem elektronischen Kopplungsmatrixelement und der Regorganisationsenergie \&\#61548;\&\#61472; [4]. Die ET Geschwindigkeit in Donor-substituierten Alkylthiolen wird haupts{\"a}chlich durch \&\#61548; beeinflusst und sogar kleine {\"A}nderungen dieser zeigen eine große Auswirkung auf die zu untersuchenden Prozesse. Aus diesem Grund wird eine Zunahme der ET Geschwindigkeit von Ferrocen (hohe Reorganisationsenergie) {\"u}ber die Phenothiazinverbindung 35 und [Ru(bpy)2(pp)]+ zu den Triarylaminchromophoren 29 und 32 (niedrige Reorganisationsenergie) beobachtet. Weiterhin spielt, im Gegensatz zu Beobachtung von Creager et al. an {\"a}quivalenten Ferrocenverbingungen, die Anbindung des Redoxzentrums an den Alkylspacer eine bedeutende Rolle. Im Falle der elektronenreichen Ether-verbr{\"u}ckten Verbindung 29 wird der ET nicht alleine durch \&\#61548;, sondern ebenso durch mesomere Effekte bestimmt. Bei 29 kommt es durch Lokalisation der positiven Ladung nahe der Ether Funktion formal zu einer Kettenverk{\"u}rzung um eine „Methyleneinheit", welche schließlich in h{\"o}heren ET Geschwindigkeiten resultiert. Im dritten Teil dieser Dissertation wurde ein Serie „molekularer Dr{\"a}hte" bestehend aus Methoxy- oder Chlorid-substituierten Triarylamin- und Phenothiazinverbindungen mit unterschiedlichen Br{\"u}ckeneinheiten und Br{\"u}ckenl{\"a}ngen zwischen Redoxzentrum und Ankerfunktion dargestellt und im Hinblick auf ihr ET Verhalten untersucht. Durch cyclovoltammetrische und UV/Vis-spektroskopische Untersuchungen konnte gezeigt werden, dass sowohl die Oxidationspotentiale als auch die energetischen Zust{\"a}nde der Chromophore recht gut durch Einf{\"u}hrung unterschiedlicher Redoxzentren und Br{\"u}ckeneinheiten beeinflusst werden k{\"o}nnen. Trotz erfolgreicher Kontrolle der Dichte der Chromophoreinheiten in den gemischten Monolagen konnte nur f{\"u}r die Verbindungen 49, 52 und 87 mit Nitril-substituierten Br{\"u}ckeneinheiten verl{\"a}ssliche ET Geschwindigkeiten erhalten werden. Bei diesen Chromphoren ist ein Absinken der ET Geschwindigkeit bei zunehmender Dichte der redoxaktiven Molek{\"u}le in den gemischten Monolagen zu beobachten, welche auf eine {\"A}nderung der Adsorptionsgeometrie hindeutet. Bei zunehmender Packungsdichte der Chromophore f{\"u}hrt dies zu einer aufrechteren Stellung der redoxaktiven Spezies. F{\"u}r alle anderen Verbindungen konnten keine Werte aufgrund der zu schnellen ET Geschwindigkeiten ermittelt werden. Konformelle, wie auch die sehr geringe Abstandsabh{\"a}ngigkeit des ET, resultieren in hohen ET Geschwindigkeiten oder auch ung{\"u}nstige HOMO-LUMO Energien bez{\"u}glich des Donors, der Br{\"u}cke und der Elektrode sind Gr{\"u}nde f{\"u}r dieses Verhalten. Die Tatsache, dass Verbindung 49 und 52 beinahe die gleichen Geschwindigkeitskonstanten des ETs unabh{\"a}ngig von der Anzahl der Br{\"u}ckeneinheiten (n = 2, n = 3) besitzen, deutet darauf hin, dass ein Hopping-Prozess stattfindet, bei welchem eine geringere L{\"a}ngenabh{\"a}ngigkeit des ETs als bei eine Superexchange-Mechanismus zu erwarten ist.}, subject = {Monoschicht}, language = {en} } @phdthesis{Berberich2012, author = {Berberich, Martin}, title = {Rylene Bisimide-Diarylethene Photochromic Systems for Non-Destructive Memory Read-out}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Diese Doktorarbeit zeigt deutlich verbesserte aus Rylenbisimiden und Diarylethenen aufgebaute, photochrome Systeme f{\"u}r das nicht-destruktive Auslesen von Fluoreszenz. Dabei wird die Fluoreszenz der Emittereinheit durch photoinduzierten Elektronentransfer nur zu einer isomeren Form des Photochromes gel{\"o}scht. Die Triebkraft f{\"u}r den Fluoreszenz-l{\"o}schenden Elektronentransfer wurde mittels Rehm-Weller-Gleichung berechnet. Die erhaltenen Systeme erf{\"u}llen die notwendigen Anforderungen f{\"u}r ein nicht-destruktives Auslesen in einem auf Schreiben, Auslesen und L{\"o}schen basierenden fluoreszierenden Datenspeicher.}, subject = {Photochromie}, language = {en} } @phdthesis{Zieschang2014, author = {Zieschang, Fabian}, title = {Energy and Electron Transfer Studies of Triarylamine-based Dendrimers and Cascades}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work the synthesis of dendritic macromolecules and small redox cascades was reported and studies of their energy and electron transfer properties discussed. The chromophores in the dendrimers and the redox cascades are linked via triazoles, which were built up by CuAAC. Thereby, a synthetic concept based on building blocks was implemented, which allowed the exchange of all basic components. Resulting structures include dendrimers composed exclusively of TAAs (G1-G3), dendrimers with an incorporated spirobifluorene core (spiro-G1 and spiro-G2) and the donor-acceptor dendrimer D-A-G1, in which the terminal groups are exchanged by NDIs. Furthermore, a series of model compounds was synthesised in order to achieve a better understanding of the photophysical processes in the dendrimers. A modification of the synthetic concept for dendrimers enabled the synthesis of a series of donor-acceptor triads (T-Me, T-Cl and T-CN) consisting of two TAA donors and one NDI acceptor unit. The intermediate TAA chromophore ensured a downhill redox gradient from the NDI to the terminal TAA, which was proved by cyclic voltammetry measurements. The redox potential of the intermediate TAA was adjusted by different redox determining substituents in the "free" p-position of the TAA. Additionally, two dyads (Da and Db) were synthesised which differ in the junction of the triazole to the TAA or the NDI, respectively. In these cascades a nodal-plane along the N-N-axes in the NDI and a large twist angle between the NDI and the N-aryl substituent guaranteed a small electronic coupling. The photophysical investigations of the dendrimers focused on the homo-energy transfer properties in the TAA dendrimers G1-G3. Steady-state emission spectroscopy revealed that the emission takes place from a charge transfer state. The polar excited state resulted in a strong Stokes shift of the emission, which in turn led to a small spectral overlap integral between the absorption of the acceptor and the emission of the donor in the solvent relaxed state. According to the F{\"o}rster theory, the overlap integral strongly determines the energy transfer rate. Fluorescence up-conversion measurements showed a strong and rapid initial fluorescence anisotropy decay and a much slower decrease on the longer time scale. The experiment revealed a fast energy transfer in the first 2 ps followed by a much slower energy hopping. Time resolved emission spectra (TRES) of the model compound M indicated a solvent relaxation on the same time scale as the fast energy transfer. The F{\"o}rster estimation of energy transfer rates in G1 explains fast energy transfer in the vibrotionally relaxed state before solvent relaxation starts. Thereby, the emission spectrum of G1 in cyclohexane served as the time zero spectrum. Thus, solvent relaxation and fast energy transfer compete in the first two ps after excitation and it is crucial to discriminate between energy transfer in the Franck-Condon and in the solvent relaxed state. Furthermore, this finding demonstrates that fast energy transfer occurs even in charge transfer systems where a large Stokes shift prevents an effective spectral overlap integral if there is a sufficient overlap integral in before solvent relaxation. Energy transfer upon excitation was also observed in the spiro dendrimers spiro-G1 and spiro-G2 and identified by steady-state emission anisotropy measurements. It was assumed that the energy in spiro-G1 is completely distributed over the entire molecule while the energy in spiro-G2 is probably distributed over only one individual branch. This finding was based on a more polarised emission of spiro-G2 compared to spiro-G1. This issue has to be ascertained by e.g. time resolved emission anisotropy measurements in further energy transfer studies. Concerning the electron transfer properties of TAA-triazole systems the radical cations of G1-G2, spiro-G1 and spiro-G2 and of the model compound M were investigated by steady-state absorption spectroscopy. Experiments showed that the triazole bridge exhibits small electronic communication between the adjacent chromophores but still possesses sufficient electronic coupling to allow an effective electron transfer from one chromophore to the other. Due to the high density of chromophores, their D-A-D structure and their superficial centrosymmetry, the presented dendrimers are prospective candidates for two-photon absorption applications. The dyads, triads and the donor-acceptor dendrimer D-A-G1 were investigated regarding their photoinduced electron transfer properties and the effects that dominate charge separation and charge recombination in these systems. The steady-state absorption spectra of all cascades elucidated a superposition of the absorption characteristics of the individual subunits and spectra indicated that the chromophores do not interact in the electronic ground state. Time resolved transient absorption spectroscopy of the cascades was performed in the fs- and ns-time regime in MeCN and toluene as solvent. Measurements revealed that upon with 28200 cm-1 (355) nm and 26300 cm-1 (380 nm), respectively, an electron is transferred from the TAA towards the NDI unit yielding a CS state. In the triads at first a CS1 state is populated, in which the NDI is reduced and the intermediate TAA1 is oxidised. Subsequently, an additional electron transfer from the terminal TAA2 to TAA1 led to the fully CS2 state. Fully CS states of the dyads and triads exhibit lifetimes in the ns-time regime. In contrast for Db in MeCN, a lifetime of 43 ps was observed for the CS state together with the population of a 3NDI state. The signals of the other CS states decay biexponentially, which is a result of the presence of the 1CS and the 3CS states. While magnetic field dependent measurements of Db did not show an effect due to the large singlet-triplet splitting, T-CN exhibited a strong magnetic field dependence which is an evidence for the 1CS/3CS assignment. Further analysis of the singlet-triplet dynamics are required and are currently in progress. Charge recombination occurred in the Marcus inverted region for compounds solved in toluene and in the Marcus normal region for MeCN as solvent. However, a significant inverted region effect was observed only for Db. Triads are probably characterised by charge recombination rates in the inverted and in the normal region near to the vertex of the Marcus parabola. Hence the inverted region effect is not pronounced and the rate charge recombination rates are all in the same magnitude. However, compared to the charge recombination rate of Db the enlarged spatial distance between the terminal TAA and the NDI in the fully CS2 states in the triads resulted in reduced charge recombination rates by ca. one order of magnitude. More important than a small charge recombination rate is an overall lifetime of the CS states and this lifetime can significantly be enhanced by the population of the 3CS state. The reported results reveal that a larger singlet-triplet splitting in the dyads led to a CS state lifetime in the us time regime while a lifetime in the ns-time regime was observed in cases of the triads. Moreover, the singlet-triplet splitting was found to be solvent dependent in the triads, which is a promising starting point for further investigations concerning singlet-triplet splitting. The donor-acceptor dendrimer D-A-G1 showed similar characteristics to the dyads. The generation of a CS state is assumed due to a clear NDI radical anion band in the transient absorption spectrum. Noteworthy, the typical transient absorption band of the TAA radical cation is absent for D A-G1 in toluene. Bixon-Jortner analysis yielded a similar electronic coupling in D-A-G1 compared to the dyads. However, the charge recombination rate is smaller than of Db due to a more energetic CS state, which in the inverted region slows down charge recombination. In combination a singlet-triplet splitting similar to the dyads prolongs the CS state lifetime up to 14 us in diluted solution. Both effects result in an even better performance of D-A-G1 concerning energy conversion. D A-G1 is therefore a promising key structure for further studies on light harvesting applications. In a prospective study a second generation donor-acceptor dendrimer D-A-G2 might be an attractive structure accessible by "click reaction" of 13 and 8. D-A-G2 is expected to exhibit a downhill oriented gradient of CS states as assumed from the CV studies on G1-G3.}, subject = {Sternpolymere}, language = {en} } @phdthesis{Kaiser2014, author = {Kaiser, Conrad}, title = {Donor-Bridge-Acceptor Systems with Varying Bridge Units for the Investigation of Intramolecular and Intermolecular Electron Transfer Processes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97614}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Within this study, the influence of the energetics of the bridge unit on electron transfer (ET) in an electrode-bridge-donor system was investigated in a monolayer environment. This was realized by specifically designing molecules containing ferrocene carboxylic ester donors and hydroquinone derivatives as bridge units and by using a gold electrode as acceptor. The energetics of the hydroquinone derivatives was adjusted by synthetically varying its substituents with the intention of changing the ET speed and mechanisms. Thereby the choice of the substituents was based on the literature known half-wave potentials of similar solvated hydroquinone derivatives and successively confirming them by conducting cyclic voltammetry on the actual bridge units synthesized. Then, a synthetic pathway, which accommodated the limited stability of the integrated terminal ferrocene carbon acid ester, was developed and successfully employed. This was followed by developing a procedure for preparing very dense and highly ordered monolayers from the target molecules on self-made gold microelectrodes. For the electrochemical investigations, several electrolyte solutions were tested until one, which ensured low susceptibility of the characterization setup towards slight changes of the electrode arrangement and measurement parameters while ensuring sufficient stability of the monolayers, was found. Furthermore, a new, commercially available potentiostat was established for the impedance measurements, which reduced the stress on the monolayers during the electrochemical characterizations in comparison to the equipment used in many former studies. Regarding the determination of the ET rates, the data analysis protocol for the impedance measurements developed by Creager et al. was slightly adapted to allow analysis of the investigated monolayers despite their non-ideal behavior. In addition, the influence of changes to the electrical parameters of the impedance scans was investigated to minimize the error in the acquired data. The electrochemical analysis of the monolayers by conducting cyclic voltammetry on MA, MB and MC prepared from A, B and C confirmed the accomplishment of near ideal surface coverage and exceptionally high order. The surface coverages of MB and MC were, probably due to the space filled by the substituents on their bridge units, slightly lower than those of MA. Furthermore, the shape of the redox waves of the ferrocene carboxylic acid redox center in the voltammogram of MA showed a broadening and a shift towards higher potentials, which was assigned to electrostatic interference of oxidized terminal redox centers due to the especially dense packing. However, in the voltammogram of MB, no sharp redox waves of the bridge units, as predicted by the analysis of preliminary monolayers of the same type with low surface coverage, were present. This was attributed to the different and varying microenvironment of the bridge units deeply embedded within high-density monolayers. In detail, the different degree of shielding of each individual bridge unit from counter ions and solvent molecules probably resulted in the half wave potential being shifted to varying higher potentials, thus preventing the formation of sharp redox waves. In addition, electrostatic effects of oxidized bridge units could have enhanced this effect. This leads to the conclusion that the half-wave potentials of fully solvated bridge units determined by the cyclic voltammetry are not suited to predict the energetics of the oxidized bridge states embedded within the prepared high density monolayers. Finally, the monolayers were successfully analyzed by impedance spectroscopy, which showed that the ET rate of MA is slightly higher than that of MB, and both are higher than that of MC. All of the values were, according to literature, in the expected region considering the length and degree of conjugation of the backbone. However, this picture is relativized when considering the targeted energetic alignment of the bridge units. According to the predicted very small energy gap between the oxidized states of the donor and the bridge unit in MB, a domination of the hopping mechanism should have led to a several orders of magnitude higher ET rate than in MA and MC. That this was not the case was attributed to the underestimation of the energy of the oxidized bridge states by utilizing cyclic voltammetry of the fully solvated bridge units (see above). According to the small differences of the ET rates the superexchange process was assumed to be the dominating mechanism not only in MA and MC but also in MB. However, even when shifted, the predicted energetic order of the oxidized bridge states should have led to a moderately decreasing ET rate from MB over MA to MC. The reason for the actual ET rate in MA being slightly higher than in MB might be found in the electrostatic interference of the terminal redox centers in MA (see above). In conclusion, the targeted model systems were prepared and the ET rates were successfully determined. However, the problems concerning the relative energetic positioning of the involved states within the dense monolayers prevented the specific alteration of the speed and mechanism of the ET. The reason for this can be probably found in the high density and order of the monolayers prepared within this work, which hamper the intrusion of the components of the electrolyte solutions. This various degree of stabilization for the individual bridge units by counter ions and solvent molecules leads to the energy of the oxidized bridge states being splitted and shifted towards higher potentials with respect to fully solvated bridge units. This effect might be further enhanced by electrostatics of neighboring already oxidized bridge states. All this makes the predetermination of the energetics of the embedded bridge units extremely difficult. On one hand, this behavior can be considered an obstacle and could probably be circumvented by designing molecules with bulky anchor groups and rigid molecular backbones, which would ensure perpendicular arrangement to the surface and full exposure of the bridge and terminal redox centers to the solvent molecules and counter ions. On the other hand, monolayers which completely embed integral redox centers might open up the opportunity to study the effects of microenvironments similar to those in solid state materials. Regarding mixed valence compounds, the present study focuses on bistriarylamine radical cation F∙+, which contains the [3.3]paracyclophane bridge unit. The results were compared to the, except for the bridge units, identical literature known compounds G∙+ and N∙+ with [2.2]paracyclophane and p-xylene bridges respectively. This led to the conclusion that slightly different bridge units can induce substantial changes to the internal reorganization energy. This is especially noteworthy since it is usually believed that structural adaption limited to the redox centers taking part in the charge transfer dominates the internal reorganization energy. Furthermore, the application of the two-state Mulliken-Hush approach shows that compounds F∙+ and G∙+ have near identical couplings and similar thermal barriers. Confirmation of the latter finding as well as near identical thermal electron transfer rates for both compounds were provided via a cooperation project by Grampp et al. in which these values were directly extracted from temperature dependent electron paramagnetic resonance measurements. These results are quite unexpected since the "through-space" distances of the stacked pi-systems in the paracyclophane bridges differ significantly. They are well within the sum of the van der Waals radii in G∙+ and barely within them in compound F∙+. In addition, these findings weaken the common assumption of the ethylene bridges in G∙+ substantially adding to the electronic coupling, since then, in F∙+, due to its propylene linkers, the coupling should be substantially reduced. Finally, relying on the fact that the electronic couplings are only three times higher and the thermal electron transfer rates are only one order of magnitude higher for N∙+ than for compounds F∙+ and G∙+ shows that intermolecular electron transfer in solid state materials can remain efficient, if the interacting pi-systems stay within the sum of van der Waals radii of their carbons. Concerning the donor-acceptor dyads, the current investigation centers on triarylamine-cyclophane-naphtalene diimide (TAA-CP-NDI) compounds which display almost complete photoinduced charge separation. Furthermore, their singlet charge separated states show lifetimes of hundreds of nanoseconds, which is rarely found in such simple dyads. In the present case they can be attributed to the particular amount of electronic coupling V (on the order of 100 cm^-1), which is brought about by incorporation of the smallest model systems for pi-stacks, the CPs, together with the nodes on the NDI lowest unoccupied molecular orbital, which electronically decouples the central NDI from its nitrogen substituents. In agreement with studies of [2.2]- and [3.3]paracyclophane bridged mixed valence compounds (see above), the cycolphane bridged dyads show very similar electronic coupling when dealing with ground state processes like charge recombination. However, when investigating excited state processes, like charge separation in the TAA-CP-NDI dyads, one has to bear in mind that the CP orbitals are involved in the formation of intermediate states that likely possess charge transfer character. In this case, the [2.2]paracyclophane bridge obviously induces a stronger coupling than the [3.3]paracyclophane. Another interesting property of the dyads studied here is the substantial population of the triplet charge separated (CS) state of ca. one third regarding both CS states, which is brought about by singlet-triplet interconversion from the singlet CS state. Thus, the triplet CS state with a lifetime of several microseconds acts as a kind of buffer for the CS state before recombining to the ground state and, thus, leads to distinctly prolonged overall lifetimes of the charge separated states. Thus it can be concluded that the intersystem crossing and charge recombination (CR) processes of the CS states are governed by a delicate balance of a large electronic coupling V and a large exchange interaction 2J (both with regard to systems containing a through-space pathway). The latter appears to be induced by second order interaction with a local triplet state lying close in energy to the CS state. This balance results in slow CR- and singlet-triplet- interconversion rates, which differ only by one order of magnitude. Compared to the many NDI containing dyads studied so far, these features of the dyads studied here are, to the best of our knowledge, unique. Especially the combination of high quantum yield of charge separation, long lifetimes and high energy of the charge separated state make the investigated systems interesting for practical applications. Furthermore, the presented unraveling of the underlying mechanisms is of substantial value for the future design of dyads for practical applications regarding the implementation and adjustment of these favorable properties.}, subject = {Elektronentransfer}, language = {en} } @phdthesis{Fimmel2015, author = {Fimmel, Benjamin}, title = {Perylene Bisimide Foldamers: Synthesis and In-Depth Studies of the Ground- and Excited States Properties}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125173}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {In this thesis the syntheses and detailed investigations on two foldable PBI systems were presented. The reversible, solvent-dependet folding/unfolding-behavior was used to study the ground and excited states properties of folda-dimer and folda-trimer by means of different spectroscopic methods as well as theoretical studies. The switching between charge transfer or excimer formation pathways of photoexcited molecules influenced by the spatial arrangement of chromophores within defined dye systems illustrates the impact of conformational preferences on functional properties.}, subject = {Perylenbisdicarboximide }, language = {en} } @phdthesis{Klein2015, author = {Klein, Johannes Hubert}, title = {Electron Transfer and Spin Chemistry in Iridium-Dipyrrin Dyads and Triads}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-118726}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The successful synthesis of a family of donor-iridium complex-acceptor triads (T1-T6, pMV1 and mMV1) and their electrochemical and photophysical properties were presented in this work. Triarylamines (TAA) were used as donors and naphthalene diimide (NDI) as acceptor. A bis-cyclometalated phenylpyrazole iridium dipyrrin complex acts as a photosensitiser. In addition, a molecular structure of T1 was obtained by single crystal X-ray diffraction. Transient absorption spectroscopy experiments of these triads resembled that upon excitation a photoinduced electron transfer efficiently generates long-lived, charge-separated (CS) states. Thereby, the electron-transfer mechanism depends on the excitation energy. The presence of singlet and triplet CS states was clarified by magnetic-field dependent transient-absorption spectroscopy in the nanosecond time regime. It was demonstrated that the magnetic field effect of charge-recombination kinetics showed for the first time a transition from the coherent to the incoherent spin-flip regime. The lifetime of the CS states could be drastically prolonged by varying the spacer between the iridium complex and the NDI unit by using a biphenyl instead of a phenylene unit in T4. A mixed-valence (MV) state of two TAA donors linked to an iridium metal centre were generated upon photoexcitation of triad pMV1 and mMV1. The mixed-valence character in these triads was proven by the analysis of an intervalence charge-transfer (IV-CT) band in the (near-infrared) NIR spectral region by femtosecond pump-probe experiments. These findings were supported by TD-DFT calculations. The synthesis of dyads (D1-D4) was performed. Thereby the dipyrrin ligand was substituted with electron withdrawing groups. The electrochemical and photophysical characterisation revealed that in one case (D4) it was possible to generate a CS state upon photoexcitation.}, subject = {Elektronentransfer}, language = {en} } @phdthesis{Spenst2017, author = {Spenst, Peter}, title = {Xylylene Bridged Perylene Bisimide Cyclophanes and Macrocycles}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-139015}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {This work is concerned with the syntheses and photophysical properties of para-xylylene bridged macrocycles nPBI with ring sizes from two to nine PBI units, as well as the complexation of polycyclic aromatic guest compounds. With a reduced but substantial fluorescence quantum yield of 21\% (in CHCl3) the free host 2PBI(4-tBu)4 can be used as a dual fluorescence probe. Upon encapsulation of rather electron-poor guests the fluorescence quenching interactions between the chromophores are prevented, leading to a significant fluorescence enhancement to > 90\% ("turn-on"). On the other hand, the addition of electron-rich guest molecules induces an electron transfer from the guest to the electron-poor PBI chromophores and thus quenches the fluorescence entirely ("turn-off"). The photophysical properties of the host-guest complexes were studied by transient absorption spectroscopy. These measurements revealed that the charge transfer between guest and 2PBI(4-tBu)4 occurs in the "normal region" of the Marcus-parabola with the fastest charge separation rate for perylene. In contrast, the charge recombination back to the PBI ground state lies far in the "inverted region" of the Marcus-parabola. Beside complexation of planar aromatic hydrocarbons into the cavity of the cyclophanes an encapsulation of fullerene into the cyclic trimer 3PBI(4-tBu)4 was observed. 3PBI(4-tBu)4 provides a tube-like structure in which the PBI subunits represent the walls of those tubes. The cavity has the optimal size for hosting fullerenes, with C70 fitting better than C60 and a binding constant that is higher by a factor of 10. TA spectroscopy in toluene that was performed on the C60@3PBI(4-tBu)4 complex revealed two energy transfer processes. The first one comes from the excited PBI to the fullerene, which subsequently populates the triplet state. From the fullerene triplet state a second energy transfer occurs back to the PBI to generate the PBI triplet state. In all cycles that were studied by TA spectroscopy, symmetry-breaking charge separation (SB-CS) was observed in dichloromethane. This process is fastest within the PBI cyclophane 2PBI(4-tBu)4 and slows down for larger cycles, suggesting that the charge separation takes place through space and not through bonds. The charges then recombine to the PBI triplet state via a radical pair intersystem crossing (RP-ISC) mechanism, which could be used to generate singlet oxygen in yields of ~20\%. By changing the solvent to toluene an intramolecular folding of the even-numbered larger cycles was observed that quenches the fluorescence and increases the 0-1 transition band in the absorption spectra. Force field calculations of 4PBI(4-tBu)4 suggested a folding into pairs of dimers, which explains the remarkable odd-even effect with respect to the number of connected PBI chromophores and the resulting alternation in the absorption and fluorescence properties. Thus, the even-numbered macrocycles can fold in a way that all chromophores are in a paired arrangement, while the odd-numbered cycles have open conformations (3PBI(4-tBu)4, 5PBI(4-tBu)4, 7PBI(4-tBu)4) or at least additional unpaired PBI unit (9PBI(4-tBu)4). With these experiments we could for the first time give insights in the interactions between cyclic PBI hosts and aromatic guest molecules. Associated with the encapsulation of guest molecules a variety of possible applications can be envisioned, like fluorescence sensing, chiral recognition and photodynamic therapy by singlet oxygen generation. Particularly, these macrocycles provide photophysical relaxation pathways of PBIs, like charge separation and recombination and triplet state formation that are hardly feasible in monomeric PBI dyes. Furthermore, diverse compound specific features were found, like the odd-even effect in the folding process or the transition of superficial nanostructures of the tetrameric cycle influenced by the AFM tip. The comprehensive properties of these macrocycles provide the basis for further oncoming studies and can serve as an inspiration for the synthesis of new macrocyclic compounds.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Schaefer2018, author = {Sch{\"a}fer, Julian}, title = {Synthesis and Photophysical Investigation of Donor-Acceptor-Substituted meta- and para-Benzene Derivatives}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-155007}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Im ersten Teil dieser Arbeit wurde die erfolgreiche Synthese einer Serie von bisTriarylamin (bisTAA) Verbindungen vorgestellt. Zum einen wurde das Substitutionmuster an der Benzol Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pX bzw. mX), und zum anderen die energetische Lage der Br{\"u}ckeneinheit durch zwei elektronen-schiebende oder ziehende Substituenten X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Im Falle der meta-Serie wurden auch einige in 4,6-Position substituierte Verbinungen hergestellt (mX46). Die neutral Verbindungen wurden bez{\"u}glich ihrer elektrochemischen und photophysikalischen Eigenschaften untersucht. Durch Oxidation konnten die gemischt valenten (MV), kationischen bisTAA-Verbindungen erzeugt werden. Der thermisch induzierte Lochtransfer (HT) wurde durch temperatur-abh{\"a}ngige ESR-Spektroskopie untersucht. W{\"a}hrend die HT-Rate k und HT-Barriere ΔG in mX unbeeinflusst von den Substituenten X sind, steigen gleichzeitig k und ΔG in der pX-Serie mit zunehmenden Elektonenschub von X an. Diese zun{\"a}chst widerspr{\"u}chliche Beobachtung konnte durch einen ansteigenden Einfluss von L{\"o}sungsmitteleffekten und dadurch resultierend, einer zus{\"a}tzlichen effektiven Barriere erkl{\"a}rt werden. Der optisch induzierte Lochtransfer wurde mittels UV/Vis/NIR-Spektroskopie untersucht. Die pX-Serie zeigte eine Zuhname der elektronischen Kopplung V und dementsprechende eine Abnahme von ΔG, mit Anstieg des elektonenschiebenden Charakters von X. F{\"u}r mX war eine spektroskopische Bestimmung dieser Parameter nicht m{\"o}glich. Die mX46-Serie zeigte ein intermedi{\"a}res Verhalten, wobei MV-Verbindungen mit stark elektronenschiebenden X eine {\"a}hnliche hohe Kopplungen wie pX aufwiesen, was mit Hilfe von DFT-Rechnungen bez{\"u}glich der Molek{\"u}lorbitale erkl{\"a}rt werden konnte. Im zweiten Teil dieser Arbeit wurde die Synthese einer Serie von Verbindungen mit Triarylamin (TAA) als Donor und Naphthalindiimid (NDI) als Akzeptor vorgestellt. Auch hier wurde zum einen das Substitutionmuster an der Benzol-Br{\"u}ckeneinheit in Form einer meta- bzw. para-St{\"a}ndigkeit der Redoxzentren (pXNDI bzw. mXNDI) variieiet und die energetische Lage der durch X (mit X = OMe, Me, Cl, CN, NO2) in 2,5-Position variiert. Außerdem wurde die in 4,6-Position substituierte Verbinungen mOMe46NDI hergestellt. Alle Verbindungen wurden bez{\"u}glich ihrer elektochemischen und photophysikalischen Eigenschaften untersucht. Die Elektronentransferprozesse der Ladungsseparierung (CS) und Ladungsrekombination (CR) dieser Verbindungen sollten mittels transienter Absorptionsspektroskopie (TA) in Toluol untersucht werden. F{\"u}r die Nitroverbindungen p-/mNO2NDI war dies nicht m{\"o}glich, da sich diese unter Bestrahung zersetzten. Die CR von pXNDI waren nicht im ns-Bereich detektierbar, weshalb sich auf die mXNDI-Serie (mit X = OMe-CN) konzentriert wurde. Die CS wurde mittels fs-TA untersucht. Nach optischer Anregung konnte die Bildung eines CS-Zustandes detektiert werden, dessen Bildungsgeschwindigkeit hin zu elektronen-ziehenden Substituenten X steigt. Die CR wurde mit ns-TA untersucht. Sie findet in der Marcus invertierten Region statt und zeichnet sich wird durch ein biexponentialles Abklingverhaten, was durch ein Singulet-Triplett Gleichgewicht im CS-Zustand zustande kommt, aus. Durch Anlegen eines externen Magnetfeldes ließ sich das Abklingverhalten entscheidend ver{\"a}ndern und es konnte eine Singulett-Triplett Aufspaltung nachgewiesen werden. Dieser Befund konnte weiterhin durch Simulation der Abklingkurven best{\"a}tigt werden. In beiden Teilen dieser Arbeit konnte ein entscheidender Einfluss der Benzolbr{\"u}cke auf die auftretenden Ladungstransferprozesse gezeigt werden. F{\"u}r den HT in Grundzustand der MV bisTAA Verbindungen, sowie der ET im angeregten Zustand der Donor-Akzeptor-Verbindungen, wurden die h{\"o}chsten ET-Raten f{\"u}r die para-Serien pX und pXNDI gefunden, w{\"a}hrend die meta-Serien mX und mXNDI deutlch kleine Transferraten aufwiesen. In beiden Studien zeigten die meta46-Verbindungen mX46 und mOMeNDI46 ein intermedi{\"a}res Verhalten, zwischen denen der para- und meta-Verbindungen.}, subject = {Synthese}, language = {en} } @phdthesis{Kaufmann2019, author = {Kaufmann, Christina}, title = {Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding}, doi = {10.25972/OPUS-17300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 {\AA} lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 {\AA} result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 {\AA} larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 {\AA}) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based "null-aggregate" could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 {\AA} defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly.}, subject = {Supramolekulare Chemie}, language = {en} } @phdthesis{Roos2021, author = {Roos, Markus}, title = {Synthesis, Photophysics and Photocatalysis of [FeFe] Complex Containing Dyads and Bimolecular Systems}, doi = {10.25972/OPUS-23453}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-234537}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {In the course of this work, a total of three photocatalytically active dyads for proton reduction could be synthesized together with the associated individual components. Two of them, D1 and D2, comprised a [Ru(bpy)3]2+ photosensitizer and D3 an [Ir(ppy)2bpy]+ photosensitizer. A Ppyr3-substituted propyldithiolate [FeFe] complex was used as catalyst in all systems. The absorption spectroscopic and electrochemical investigations showed that an inner-dyadic electronic coupling is effectively prevented in the dyads due to conjugation blockers within the bridging units used. The photocatalytic investigations exhibited that all dyad containing two-component systems (2CS) showed a significantly worse performance than the corresponding bimolecular three-component systems (3CS). Transient absorption spectroscopy showed that the 2CS behave very similarly to the associated multicomponent systems during photocatalysis. The electron that was intended for the intramolecular transfer from the photosensitizer unit to the catalyst unit within the dyads remains at the photosensitizer for a relatively long time, analogous to the 3CS and despite the covalently bound catalyst. It is therefore assumed that this intramolecular electron transfer is likely to be hindered as a result of the weak electronic coupling caused by the bridge units used. Instead, the system bypasses this through an intermolecular transfer to other dyad molecules in the immediate vicinity. In addition, with the help of emission quenching experiments and electrochemical investigations, it could be clearly concluded that all investigated systems proceed via the reductive quenching mechanism during photocatalysis.}, subject = {Fotokatalyse}, language = {en} }