@article{OrthCazesButtetal.2015, author = {Orth, Martin F. and Cazes, Alex and Butt, Elke and Grunewald, Thomas G. P.}, title = {An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {1}, doi = {10.18632/oncotarget.3083}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144546}, pages = {26-42}, year = {2015}, abstract = {The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities.}, language = {en} } @article{VamanVSPoppeHoubenetal.2015, author = {Vaman V. S., Anjana and Poppe, Heiko and Houben, Roland and Grunewald, Thomas G. P. and Goebeler, Matthias and Butt, Elke}, title = {LASP1, a Newly Identified Melanocytic Protein with a Possible Role in Melanin Release, but Not in Melanoma Progression}, series = {PLoS One}, volume = {10}, journal = {PLoS One}, number = {6}, doi = {10.1371/journal.pone.0129219}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125994}, pages = {e0129219}, year = {2015}, abstract = {The LIM and SH3 protein 1 (LASP1) is a focal adhesion protein. Its expression is increased in many malignant tumors. However, little is known about the physiological role of the protein. In the present study, we investigated the expression and function of LASP1 in normal skin, melanocytic nevi and malignant melanoma. In normal skin, a distinct LASP1 expression is visible only in the basal epidermal layer while in nevi LASP1 protein is detected in all melanocytes. Melanoma exhibit no increase in LASP1 mRNA compared to normal skin. In melanocytes, the protein is bound to dynamin and mainly localized at late melanosomes along the edges and at the tips of the cell. Knockdown of LASP1 results in increased melanin concentration in the cells. Collectively, we identified LASP1 as a hitherto unknown protein in melanocytes and as novel partner of dynamin in the physiological process of membrane constriction and melanosome vesicle release.}, language = {en} } @article{HailerGrunewaldOrthetal.2014, author = {Hailer, Amelie and Grunewald, Thomas G. P. and Orth, Martin and Reiss, Cora and Kneitz, Burkhard and Spahn, Martin and Butt, Elke}, title = {Loss of tumor suppressor mir-203 mediates overexpression of LIM and SH3 Protein 1 (LASP1) in high-risk prostate cancer thereby increasing cell proliferation and migration}, series = {Oncotarget}, volume = {5}, journal = {Oncotarget}, number = {12}, issn = {1949-2553}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120540}, pages = {4144-53}, year = {2014}, abstract = {Several studies have linked overexpression of the LIM and SH3 domain protein 1 (LASP1) to progression of breast, colon, liver, and bladder cancer. However, its expression pattern and role in human prostate cancer (PCa) remained largely undefined. Analysis of published microarray data revealed a significant overexpression of LASP1 in PCa metastases compared to parental primary tumors and normal prostate epithelial cells. Subsequent gene-set enrichment analysis comparing LASP1-high and -low PCa identified an association of LASP1 with genes involved in locomotory behavior and chemokine signaling. These bioinformatic predictions were confirmed in vitro as the inducible short hairpin RNA-mediated LASP1 knockdown impaired migration and proliferation in LNCaP prostate cancer cells. By immunohistochemical staining and semi-quantitative image analysis of whole tissue sections we found an enhanced expression of LASP1 in primary PCa and lymph node metastases over benign prostatic hyperplasia. Strong cytosolic and nuclear LASP1 immunoreactivity correlated with PSA progression. Conversely, qRT-PCR analyses for mir-203, which is a known translational suppressor of LASP1 in matched RNA samples revealed an inverse correlation of LASP1 protein and mir-203 expression. Collectively, our results suggest that loss of mir-203 expression and thus uncontrolled LASP1 overexpression might drive progression of PCa.}, language = {en} }